Everyday Situations 1

A. Plumber

A plumber charges a fixed fee for coming to your house, then charges a fixed amount per hour on top of this.
$x=$ the time the job takes in hours.
$y=$ the total cost of the plumber's time in dollars.

B. Cycling

A cyclist travels along a direct route from town A to town B.
$x=$ the distance of the cyclist from town A in miles.

How far apart are the towns?
$y=$ the distance of the cyclist from town B in miles.

C. Movie subscription

You get two movies free, but then you get charged at a fixed rate per movie.
$x=$ the number of movies seen.
$y=$ the total money spent in dollars.

What is the fixed rate per movie?

D. Internet café

An internet café charges a fixed amount per minute to use the internet.
$x=$ the number of minutes spent on the internet.
$y=$ the cost of using the internet in dollars.

How many minutes will \$8 buy?

Everyday Situations 2

E. Cooling kettle

A kettle of boiling water cools in a warm kitchen.
$x=$ the time that has elapsed in minutes.
$y=$ the temperature of the kettle in degrees Celsius.

What is the temperature of the room?

F. Ferris wheel

A Ferris wheel turns round and round.
$x=$ the time that has elapsed in seconds.
$y=$ the height of a seat from the ground in meters.

How long does it take the Ferris wheel to turn once?

G. Folding paper

A piece of paper is folded in half. It is then folded in half again, and again...
$x=$ the number of folds.
$y=$ the thickness of the paper in inches.

How thick would the paper be if you could fold it 10 times?

When is the ball travelling most slowly?

Everyday Situations 3

I. Test drive

A car drives along a test track.
$x=$ the average speed of the car in meters per second.
$y=$ the time it takes to travel the length of the track in seconds.

J. Balloon

A man blows up a balloon.
$x=$ the volume of air he has blown in cubic inches.
$y=$ the diameter of the balloon in inches.

K. Height of golf shot.

A golfer hits a ball.
$x=$ the time that has elapsed in seconds.
$y=$ the height of the ball in meters.

When does the ball hit the ground?

L. Film projector

A film is shown on a screen using a small projector.
$x=$ the distance from the projector to the screen in feet.

What is the diameter of the balloon when the man has blown in 1000 cubic inches?

$y=$ the area of the picture in square feet.

How large is the picture when the screen is 10 feet away?

Graphs 1

Graphs 2

Algebraic Functions

$y=5 x-10$	${ }^{12} \quad y=\frac{3 x}{4}$
${ }^{\text {A3 }} \quad y=40 x+60$	${ }^{\text {M4 }} y=-x+100$
${ }^{\text {as }} y=\frac{200}{x}$	${ }^{46} \quad y=\frac{5}{4} \sqrt[3]{x}$
A7 $y=10 \sqrt{(x-3)^{2}+7}$	As $y=\frac{1}{4} x^{2}$
${ }^{19} y=30 x-5 x^{2}$	A0 $y=30+30 \sin (18 x)$
${ }^{\text {M11 }} \mathrm{y}=20+80 \times(0.27)^{*}$	${ }^{\text {A2 }} \quad y=\frac{2^{x}}{1000}$

