2. During harvesting season at Florida Blue Farms, hand pickers collect about 200 pounds of bluebemies perday with a 95% pack-out rate. The bluebery harvester machine collects about 22,000 pounds of bluebemies per day with a 90% pack-out rate. The pack-out rate is the percentage of collected blueberies that can be packaged to be sold, based on Florida Blue Farms' quality standards.

Let h represent the number of days the hand pickers work and m represent the number of days the harvester mac hine is used. Which of the following algebraic expressionscan be used to estimate the amount of collected bluebemies that are packed at the Florida Blue Fa ms for fresh consumption this sea son?
(A) $(0.95 h+200)(0.90 m+22000)$
(B) $0.95(200 \mathrm{~h})+0.90(22000 \mathrm{~m})$
(C) $200.95 \mathrm{~h}+22000.90 \mathrm{~m}$
(D) $(200 h+0.95)(22000 m+0.90)$

Section 1 - Topic 2

Understanding Polynomial Expressions
A term is a constant, va riable, or multiplic a tive combination of the two.

$$
\text { Consider } 3 x^{2}+2 y-4 z+5
$$

How many terms do you see?

List each term.

This is an example of a polynomial expression. A polynomial can be one term or the sum of several terms. There are many different types of polynomials.

A monarchy has one leader. How many tems do you think a monomial has?

A bicycle hastwo wheels. How many terms do you think a binomial has?

A tric eratops has three homs. How many terms do you think a trinomial has?

Want to leam more about how Florida Blue Farms uses algebra to harvest blueberies? Visit the Student Area in Algebra Nation to see how people use algebra in the real world! You can find the video in the "Math in the Real World: Algebra at Work" folder.

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, a nd Study Experts. You can also help others on the Algebra Wall and eam Karma more and get started!

Let's recap:

Type of Polynomial	Number of Tems	Example
Monomial		
Binomial		
Trinomial		
Polynomial		

Some important facts:
> The degree of a monomial is the sum of the
\qquad of the variables.
> The degree of a polynomial is the degree of the monomial term with the \qquad degree.

Sometimes, you will be asked to write polynomials in standard form.
> Write the monomial terms in \qquad order.
> The leading term of a polynomial is the tem with the
\qquad —.
> The leading coefficient is the coeffic ient of the
\qquad -.

Let's Practice!

1. Are the following expressions polynomials? If so, na me the type of polynomial and state the degree. If not, justify your reasoning.
a. $8 x^{2} y^{3}$
b. $\frac{2 a^{2}}{3 b}$
C. $\frac{3}{2} x^{4}-5 x^{3}+9 x^{7}$
d. $10 a^{6} b^{2}+17 a b^{3} c-5 a^{7}$
e. $2 m+3 n^{-1}+8 m^{2} n$

Ty It

2. Are the following expressions polynomials?
a. $\frac{1}{2} a+2 b^{2}$
o polynomial
o not a polynomial
b. 34

> O polynomial
> O not a polynomial
C. $\frac{x y}{y^{2}}$

O polynomial
O nota polynomial
d. $2 r s+s^{4}$
o polynomial
o not a polynomial
e. $x y^{2}+3 x-4 y^{-1}$

O polynomial
o nota polynomial
3. Consider the polynomial $3 x^{4}-5 x^{3}+9 x^{7}$.
a. Write the polynomial in standard form.
b. What is the degree of the polynomial?
c. How many tems are in the polynomial?
d. What is the leading term?
e. What is the leading coefficient?

BEATTHE TEST:

1. Match the polynomial in the left column with its descriptive feature in the right column.
A. $x^{3}+4 x^{2}-5 x+9$
I. Fifth-degree polynomial
B. $5 a^{2} b^{3}$
II. Constant term of -2
C. $3 x^{4}-9 x^{3}+4 x^{9}$
III. Seventh-degree polynomial
D. $7 a^{6} b^{2}+18 a b^{3} c-9 a^{7}$
IV. Leading coeffic ient of 3
E. $x^{5}-9 x^{3}+2 x^{7}$
V. Fourterms
F. $3 x^{3}+7 x^{2}-11$
VI. Eighth-degree polynomial
G. $x^{2}-2$
VII. Equivalent to $4 x^{9}+3 x^{4}-9 x^{3}$

Section 1 - Topic 3

Algebraic Expressions Using the Distributive Property

Rec all the distributive property.

> If \boldsymbol{a} and \boldsymbol{b} are real numbers, then $\boldsymbol{a}(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a}$. \qquad $+\boldsymbol{a}$. \qquad .

One way to visualize the distributive property is to use models.
Consider $(a+3)(a+2)$.

Now, use the distributive property to write an equivalent expression for $(a+3)(a+2)$.

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, and Study Experts. You can also help others on the Algebra Wall and eam Kama Points for doing so. Go to AlgebraNation.com to leam
more and get started!
Algebra Wall

