Adding and Subtracting Functions

Let $h(x)=2 x^{2}+x-5$ and $g(x)=-3 x^{2}+4 x+1$.
Find $h(x)+g(x)$.

$$
\begin{aligned}
& \left(2 x^{2}+x-5\right)+\left(-3 x^{2}+4 x+1\right) \\
& =2 x^{2}-3 x^{2}+x+4 x-5+1 \\
& =-x^{2}+5 x-4
\end{aligned}
$$

Find $h(x)-g(x)$.

$$
\begin{aligned}
& \left(2 x^{2}+x-5\right)-\left(-3 x^{2}+4 x+1\right) \\
& =2 x^{2}+x-5+3 x^{2}-4 x-1 \\
& =2 x^{2}+3 x^{2}+x-4 x-5-1 \\
& =5 x^{2}-3 x-6
\end{aligned}
$$

1. Consider the following functions.

$$
\begin{gathered}
f(x)=3 x^{2}+x+2 \\
g(x)=4 x^{2}+2(3 x-4) \\
h(x)=5\left(x^{2}-1\right)
\end{gathered}
$$

a. Find $f(x)-g(x)$.

$$
\begin{aligned}
& \left(3 x^{2}+x+2\right)-\left(4 x^{2}+2(3 x-4)\right) \\
& \left(3 x^{2}+x+2\right)-\left(4 x^{2}+6 x-8\right) \\
& 3 x^{2}+x+2-4 x^{2}-6 x+8 \\
& 3 x^{2}-4 x^{2}+x-6 x+2+8 \\
& -x^{2}-5 x+10
\end{aligned}
$$

b. Find $g(x)-h(x)$.

$$
\begin{aligned}
& 4 x^{2}+2(3 x-4)-5\left(x^{2}-1\right) \\
& 4 x^{2}+6 x-8-\left(5 x^{2}-5\right) \\
& 4 x^{2}+6 x-8-5 x^{2}+5 \\
& 4 x^{2}-5 x^{2}+6 x-8+5 \\
& -x^{2}+6 x-3
\end{aligned}
$$

Ty It
2. Recall the functions we used earlier.

$$
\begin{gathered}
f(x)=3 x^{2}+x+2 \\
g(x)=4 x^{2}+2(3 x-4) \\
h(x)=5\left(x^{2}-1\right)
\end{gathered}
$$

a. Let $m(x)$ be $f(x)+g(x)$. Find $m(x)$.

$$
\begin{aligned}
& m(x)=\left(3 x^{2}+x+2\right)+\left(4 x^{2}+2(3 x-4)\right) \\
& m(x)=\left(3 x^{2}+x+2\right)+\left(4 x^{2}+6 x-8\right) \\
& m(x)=3 x^{2}+x+2+4 x^{2}+6 x-8 \\
& m(x)=3 x^{2}+4 x^{2}+x+6 x+2-8 \\
& m(x)=7 x^{2}+7 x-6
\end{aligned}
$$

b. Find $h(x)-m(x)$.

$$
\begin{aligned}
& 5\left(x^{2}-1\right)-\left(7 x^{2}+7 x-6\right) \\
& 5 x^{2}-5-7 x^{2}-7 x+6 \\
& 5 x^{2}-7 x^{2}-7 x-5+6 \\
& -2 x^{2}-7 x+1
\end{aligned}
$$

1. Consider the functions below.

$$
\begin{aligned}
& f(x)=2 x^{2}+3 x-5 \\
& g(x)=5 x^{2}+4 x-1
\end{aligned}
$$

Which of the following is the resulting polynomial when $f(x)$ is subtracted from $g(x)$?
(A) $-3 x^{2}-x-4$
(B) $-3 x^{2}+7 x-6$
(C) $3 x^{2}+x+4$
(D) $3 x^{2}+7 x-6$

Answer: C

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, and Study Experts. You can also help others on the Algebra Wall and eam Ka ma

Use the distributive property and modeling to perform the following function operations.

Let $f(x)=3 x^{2}+4 x+2$ and $g(x)=2 x+3$.
Find $f(x) \cdot g(x)$.

$$
\begin{aligned}
& \left(3 x^{2}+4 x+2\right)(2 x+3) \\
& 3 x^{2} \cdot 2 x+3 x^{2} \cdot 3+4 x \cdot 2 x+4 x \cdot 3+2 \cdot 2 x+2 \cdot 3 \\
& 6 x^{3}+9 x^{2}+8 x^{2}+12 x+4 x+6 \\
& 6 x^{3}+17 x^{2}+16 x+6
\end{aligned}
$$

$3 x^{2}$		$4 x$	2
$2 x$	$6 x^{3}$	$8 x^{2}$	$4 x$
3	$9 x^{2}$	$12 x$	6

$$
6 x^{3}+17 x^{2}+16 x+6
$$

Let $m(y)=3 y^{5}-2 y^{2}+8$ and $p(y)=y^{2}-2$.
Find $m(y) \cdot p(y)$.

\[

\]

Let's Practice!

1. Hutchinson Square is an urban park in downtown

Summerville, South Carolina. Suppose the park is hosting a spring camival and one of the events will be a treasure hunt. The hunt takesplace in a large sandbox. The length of the sandbox in inches, $l(x)$, can be represented by the expression $(x+12)$, a nd the width of the sa ndbox in inches, $w(x)$, can be represented by the expression $(x+4)$.
a. Find $w(x) \cdot l(x)$.

$$
x^{2}+16 x+48
$$

b. Circle the best answer to complete the following statement.

The product of $w(x)$ and $l(x)$ is equivalent to the area | elevation | perimeter| volume of the sandbox.
c. The camival staff need to be sure they purchase enough sand to completely fill the sandbox. If the height of the box in inches, $h(x)$, can be represented by ($x-28$), write an expression to represent the volume of the box.
$x^{3}-12 x^{2}-400 x-1344$

Try It
2. The envelope below hasa mailing label:

a. Let $A(x)=L(x) \cdot W(x)-M(x) \cdot N(x)$. Find $A(x)$.

$$
L(x) \cdot W(x)=(6 x+5)(6 x+5)
$$

$$
=6 x \cdot 6 x+6 x \cdot 5+5 \cdot 6 x+5 \cdot 5
$$

$$
=36 x^{2}+30 x+30 x+25
$$

$$
=36 x^{2}+60 x+25
$$

$M(x) \cdot N(x)=(x+4)(x+2)$
$=x \cdot x+x \cdot 2+4 \cdot x+4 \cdot 2$
$=x^{2}+2 x+4 x+12$
$=x^{2}+6 x+8$
$A(x)=L(x) \cdot W(x)-M(x) \cdot N(x)$
$=\left(36 x^{2}+60 x+25\right)-\left(x^{2}+6 x+8\right)$
$=36 x^{2}+60 x+25-x^{2}-6 x-8$
$=35 x^{2}+54 x+17$
b. What does the function $A(x)$ represent in this problem?
The area of the front of the envelope excluding the address label.

BEATTHE TEST:

1. The length of the sides of a square are s inc hes long. A rectangle is six inches shorter and eight inc hes wider tha n the square.

Part A: Express both the length and the width of the rectangle as a function of a side of the square.

Length: $L(s)=s-6$
Width: $W(s)=s+8$

Part B: Write a function to represent the area of the rectangle in terms of the sides of the square.

$$
A(s)=(s-6)(s+8)=s^{2}+8 s-6 s-48=s^{2}+2 s-48
$$

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, and Study Experts. You can also help others on the Algebra Wall and eam Ka ma

Section 3 - Topic 5
 Closure Property

When we add two integers, what type of number is the sum?

Integer

When we multiply two irrational numbers, what type of number is the product?

It could be rational or irrational.
$\sqrt{2} \cdot \sqrt{8}=\sqrt{16}=4$
$\sqrt{2} \cdot \sqrt{3}=\sqrt{6}$

A set is_closed for a specific operation if a nd only if the operation on two elements of the set always produces an element of the same set.

Are integers closed under addition? J ustify your answer. Yes, the sum of integers always results in an integer.

Are irrational numbers closed under multiplic ation? J ustify your a nswer.

No, the product of irrational numbers is not always irrational.

Let's apply the closure property to polynomials.

Are the following statements true or false? If false, give a counterexample.

Polynomials a re closed under addition. True

Polynomials are closed under subtraction. True

Polynomials a re closed under multiplic ation. True

1. Check the boxes for the following sets that a re closed under the given operations.

Set	+	-	\times
$\{0,1,2,3,4, \ldots\}$	\boxtimes	\square	\boxtimes
$\{\ldots,-4,-3,-2,-1\}$	\boxtimes	\square	\square
$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$	\boxtimes	\boxtimes	\boxtimes
\{rational numbers $\}$	\boxtimes	\boxtimes	\boxtimes
\{polynomials\}	\boxtimes	\boxtimes	\boxtimes

2. Ms. Sa nabria claims that the closure properties for polynomials are analogous to the closure properties for integers. Mr. Roberts claims that the closure properties for polynomials are analogous to the closure properties of whole numbers. Who is correct? Explain your answer.

Ms. Sanabria is correct because integers and polynomials are both closed under addition, subtraction, and multiplication. Mr. Roberts is not correct because whole numbers are not closed under subtraction [ex: $2-5=-3$, and -3 is not a whole number]. Whole numbers are only closed under addition and multiplication, while polynomials are closed under addition, subtraction, and multiplication.

1. Choose from the following words a nd expressionsto complete the statement below.

$$
2 x^{5}+(3 y)^{-2}-2 \quad(5 y)^{2}+4 x+3 y^{3}
$$

$$
5 y^{-1}+7 x^{2}+8 y^{2}
$$

integers

variables
rational numbers

whole numbers
exponents
exponents
coeffic ients
rational

The product of $5 x^{4}-3 x^{2}+2$ and $(5 y)^{2}+4 x+3 y^{3}$
illustrates the closure property because the exponents of the product are whole numbers and the product is a polynomial.

