Section 3 - Topic 3

Adding and Subtracting Functions
Let $h(x)=2 x^{2}+x-5$ and $g(x)=-3 x^{2}+4 x+1$.
Find $h(x)+g(x)$.

Let's Practice!

1. Consider the following functions.

$$
\begin{gathered}
f(x)=3 x^{2}+x+2 \\
g(x)=4 x^{2}+2(3 x-4) \\
h(x)=5\left(x^{2}-1\right)
\end{gathered}
$$

a. Find $f(x)-g(x)$.
b. Find $g(x)-h(x)$.

Find $h(x)-g(x)$.

Try It

2. Rec all the functions we used earlier.

$$
\begin{gathered}
f(x)=3 x^{2}+x+2 \\
g(x)=4 x^{2}+2(3 x-4) \\
h(x)=5\left(x^{2}-1\right)
\end{gathered}
$$

a. Let $m(x)$ be $f(x)+g(x)$. Find $m(x)$.
b. Find $h(x)-m(x)$.

BEATTHE TEST:

1. Consider the functions below.

$$
\begin{aligned}
& f(x)=2 x^{2}+3 x-5 \\
& g(x)=5 x^{2}+4 x-1
\end{aligned}
$$

Which of the following is the resulting polynomial when $f(x)$ is subtracted from $g(x)$?
(A) $-3 x^{2}-x-4$
(B) $-3 x^{2}+7 x-6$
(C) $3 x^{2}+x+4$
(D) $3 x^{2}+7 x-6$

Section 3 - Topic 4

Multiplying Functions

Use the distributive property and modeling to perform the following function operations.

Let $f(x)=3 x^{2}+4 x+2$ and $g(x)=2 x+3$.
Find $f(x) \cdot g(x)$.

Let's Practice!

1. Hutchinson Square is an urban park in downtown Summerville, South Carolina. Suppose the park is hosting a spring camival and one of the events will be a treasure hunt. The hunt takesplace in a large sandbox. The length of the sandbox in inches, $l(x)$, can be represented by the expression $(x+12)$, and the width of the sandbox in inches, $w(x)$, can be represented by the expression $(x+4)$.
a. Find $w(x) \cdot l(x)$.
b. Circle the best answerto complete the following statement.

The product of $w(x)$ and $l(x)$ is equivalent to the a rea | elevation | perimeter| volume of the sandbox.
c. The camival staff need to be sure they purchase enough sand to completely fill the sandbox. If the height of the box in inches, $h(x)$, can be represented by $(x-28)$, write an expression to represent the volume of the box.

Ty It

2. The envelope below has a mailing label.

a. Let $A(x)=L(x) \cdot W(x)-M(x) \cdot N(x)$. Find $A(x)$.
b. What does the function $A(x)$ represent in this problem?

BEATTHE TEST!

1. The length of the sides of a square are s inches long. A rectangle is six inc hes shorter and eight inc hes wider than the square.

Part A: Express both the length and the width of the rectangle as a function of a side of the square.

Part B: Write a function to represent the area of the rectangle in tems of the sides of the square.

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, and Study Experts. You can also help others on the Algebra Wall and eam Karma Points for doing so. Go to AlgebraNation.com to leam more and get started!

Section 3 - Topic 5

Closure Property

When we add two integers, what type of number is the sum?

When we multiply two irational numbers, what type of numbers could the resulting product be?

A set is \qquad for a specific operation if and only if the operation on two elements of the set always produces an element of the same set.

Are integers closed under addition? J ustify your answer.

Are irrational numbers closed under multiplic ation? J ustify your answer.

Let's apply the closure property to polynomials.
Are the following statements true or false? If false, give a counterexample.

Polynomials are closed under addition.

Polynomials are closed under subtraction.

Polynomials are closed under multiplic ation.

Let's Practice!

1. Check the boxes for the following sets that are closed underthe given operations.

Set	+	-	\times
$\{0,1,2,3,4, \ldots\}$	\square	\square	\square
$\{\ldots,-4,-3,-2,-1\}$	\square	\square	\square
$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$	\square	\square	\square
\{rational numbers $\}$	\square	\square	\square
\{polynomials $\}$	\square	\square	\square

Try It

2. Ms. Sanabria claims that the closure properties for polynomials are analogous to the closure properties for integers. Mr. Roberts claims that the closure properties for polynomials are analogous to the closure properties for whole numbers. Who is correct? Explain your answer.

BEATTHE TEST:

1. Choose from the following words and expressionsto complete the statement below.

The product of $5 x^{4}-3 x^{2}+2$ and \qquad illustrates the closure property because the
\qquad of the product are \qquad , and the product is a polynomial.

Want some help? You can always ask questions on the Algebra Wall and receive help from other students, teachers, and Study Experts. You can also help others on the Algebra Wall and eam Kama
Algebra Wall

Points fordoing so. Go to AlgebraNation.com to leam more and get started!

Section 3 - Topic 6

Key Features of Graphs of Functions - Part 1

Let's review the definition of a function.
Every input value (x) corresponds to \qquad output value (y).

Consider the following graph.

How can a vertical line help usquickly determine if a graph represents a function?

We call this the vertical line test Use the vertic al line test to determine if the graph above represents a function.

