Lesson 11: Completing the Square

Classwork

Opening Exercise

Rewrite the following perfect square quadratic expressions in standard form. Describe patterns in the coefficients for the factored form, $(x+A)^{2}$, and the standard form, $x^{2}+b x+c$.

FACTORED FORM	WRITE THE FACTORS	DISTRIBUTE	STANDARD FORM
Example: $(x+1)^{2}$	$(x+1)(x+1)$	$x^{2}+1 x+1 x+1$	$x^{2}+2 x+1$
$(x+2)^{2}$	$(x+2)(x+2)$	$x^{2}+2 x+2 x+4$	$x^{2}+4 x+4$
$(x+3)^{2}$	$(x+3)(x+3)$	$x^{2}+3 x+3 x+9$	$x^{2}+6 x+9$
$(x+4)^{2}$			$x^{2}+8 x+16$
$(x+5)^{2}$			$x^{2}+10 x+25$
$(x+20)^{2}$			$x^{2}+40 x+400$

Example

Now try working backward. Rewrite the following standard form quadratic expressions as perfect squares.

STANDARD FORM	FACTORED FORM
$x^{2}+12 x+36$	$(x+6)^{2}$
$x^{2}-12 x+36$	$(x-6)^{2}$
$x^{2}+20 x+100$	$(x+10)^{2}$
$x^{2}-3 x+\frac{9}{4}$	$\left(x+\frac{3}{2}\right)^{2}$
$x^{2}+100 x+2500$	$(x+5)^{2}$
$x^{2}+8 x+3$	$(a n+s)^{1}$

$$
(x+6)(x+6)
$$

$$
(x+6)^{2}
$$

Exploratory Challenge
Find an expression equivalent to $x^{2}+8 x+3$ that includes a perfect square binomial.

Exercises
Rewrite each expression by completing the square.

1. $a^{2}-4 a+15$

2. $n^{2}-2 n-15$

3. $c^{2}+20 c-40$

$$
\left(\frac{20}{2}\right)^{2}=100
$$

$$
\left(\frac{1000}{2}\right)^{2}=250000
$$

4. $x^{2}-1000 x+60000$

EUREKA
5. $y^{2}-3 y+10$
6. $k^{2}+7 k+6$
7. $z^{2}-0.2 z+1.5$
8. $p^{2}+0.5 p+0.1$
9. $j^{2}-\frac{3}{4} j+\frac{3}{4}$
10. $x^{2}-b x+c$

Lesson Summary

Just as factoring a quadratic expression can be useful for solving a quadratic equation, completing the square also provides a form that facilitates solving a quadratic equation.

Problem Set

Rewrite each expression by completing the square.

1. $q^{2}+12 q+32$
2. $m^{2}-4 m-5$
3. $x^{2}-7 x+6.5$
4. $a^{2}+70 a+1225$
5. $z^{2}-0.3 z+0.1$
6. $y^{2}-6 b y+20$
7. Which of these expressions would be most easily rewritten by factoring? Justify your answer.
