Lesson 11: Completing the Square

Classwork

Opening Exercise

Rewrite the following perfect square quadratic expressions in standard form. Describe patterns in the coefficients for the factored form, $(x + A)^2$, and the standard form, $x^2 + bx + c$.

FACTORED FORM	WRITE THE FACTORS	DISTRIBUTE	STANDARD FORM
Example: $(x+1)^2$	(x+1)(x+1)	x2+1x+1x+1	x2 +2x+1
$(x+2)^2$	(x+5)(x+2)	$x^{2}+2x+2x+4$	x2+4x+4
$(x+3)^2$	(x+3)(x+3)	x2+3v+3x+9	x2+6x+9
$(x + 4)^2$			x2+8x+16
$(x+5)^2$			x2+10x+25
$(x+20)^2$			x2+40x+400

Example

Now try working backward. Rewrite the following standard form quadratic expressions as perfect squares.

STANDARD FORM	FACTORED FORM	
$x^2 + 12x + 36$	(x+6) ²	
$x^2 - 12x + 36$	(x-6) ²	
$x^2 + 20x + 100$	(x+10)2	
$x^2 - 3x + \frac{9}{4}$	$(x - \frac{3}{2})^2$	
$x^2 + 100x + 2500$	$(x+50)^2$	
$x^2 + 8x + 3$	Can't so	due

Lesson 11:

Completing the Square

Exploratory Challenge

Find an expression equivalent to $x^2 + 8x + 3$ that includes a perfect square binomial.

Exercises

Rewrite each expression by completing the square.

3.
$$c^{2} + 20c - 40$$

$$\frac{c^{2} + 20c - 40}{(c + 10)^{2} - 140}$$

$$\left(\frac{1000}{2}\right)^2 = 250000$$

$$\frac{\chi^2 - 1000\chi + 750000 - 25000}{(\chi - 500)^2 - 190,000}$$

4. $x^2 - 1000x + 60000$

Lesson 11: Completing the Square

ALGEBRA I

5.
$$y^2 - 3y + 10$$

6.
$$k^2 + 7k + 6$$

7.
$$z^2 - 0.2z + 1.5$$

8.
$$p^2 + 0.5p + 0.1$$

9.
$$j^2 - \frac{3}{4}j + \frac{3}{4}$$

10.
$$x^2 - bx + c$$

CC BY-NC-SA

Lesson Summary

Just as factoring a quadratic expression can be useful for solving a quadratic equation, completing the square also provides a form that facilitates solving a quadratic equation.

Problem Set

Rewrite each expression by completing the square.

1.
$$q^2 + 12q + 32$$

2.
$$m^2 - 4m - 5$$

3.
$$x^2 - 7x + 6.5$$

4.
$$a^2 + 70a + 1225$$

5.
$$z^2 - 0.3z + 0.1$$

6.
$$y^2 - 6by + 20$$

7. Which of these expressions would be most easily rewritten by factoring? Justify your answer.

(ce) BY-NC-SA