

Lesson 11: Completing the Square

Classwork

Opening Exercise

Rewrite the following perfect square quadratic expressions in standard form. Describe patterns in the coefficients for the factored form, $(x + A)^2$, and the standard form, $x^2 + bx + c$.

FACTORED FORM	WRITE THE FACTORS	DISTRIBUTE	STANDARD FORM
Example: $(x + 1)^2$			
$(x+2)^2$			
$(x+3)^2$			
$(x+4)^2$			
$(x+5)^2$			
$(x+20)^2$			

Example

Now try working backward. Rewrite the following standard form quadratic expressions as perfect squares.

STANDARD FORM	FACTORED FORM	
$x^2 + 12x + 36$		
$x^2 - 12x + 36$		
$x^2 + 20x + 100$		
$x^2 - 3x + \frac{9}{4}$		
$x^2 + 100x + 2500$		
$x^2 + 8x + 3$		

S.65

Exploratory Challenge

Find an expression equivalent to $x^2 + 8x + 3$ that includes a perfect square binomial.

Exercises

Rewrite each expression by completing the square.

1. $a^2 - 4a + 15$

- 2. $n^2 2n 15$
- 3. $c^2 + 20c 40$
- 4. $x^2 1000x + 60\,000$

S.66

ALGEBRA I

5. $y^2 - 3y + 10$

6. $k^2 + 7k + 6$

7. $z^2 - 0.2z + 1.5$

8. $p^2 + 0.5p + 0.1$

9.
$$j^2 - \frac{3}{4}j + \frac{3}{4}$$

10. $x^2 - bx + c$

Lesson Summary

Just as factoring a quadratic expression can be useful for solving a quadratic equation, completing the square also provides a form that facilitates solving a quadratic equation.

Problem Set

Rewrite each expression by completing the square.

- 1. $q^2 + 12q + 32$
- 2. $m^2 4m 5$
- 3. $x^2 7x + 6.5$
- 4. $a^2 + 70a + 1225$
- 5. $z^2 0.3z + 0.1$
- 6. $y^2 6by + 20$
- 7. Which of these expressions would be most easily rewritten by factoring? Justify your answer.

S.68