Warm-up 9/17

Find 3 points for the following equations (x, y). You will choose your x 's.
1.) $y=2 x+4$
2.) $y-2 x=4$
3.) $2 x+2 y=6$

Warm-up 9/17
Find 3 points for the following equations (\mathbf{x}, y). You will choose your x 's.

$$
\begin{aligned}
& \text { 1.) } y=2 x+4 \\
& y=2(6)+4 \\
& \text { 2.) } y-2 x=4 \quad y=2 x+4 \\
& y=2(2)+4 \quad y=2(3)+4 \\
& y-2(5)=4 \\
& y=2(3)+4 \\
& =4+4 \quad=6+4 \\
& =8=10 \\
& y-10=4 \\
& =6+4 \\
& (2,8)(3,10)(6,16) \\
& \text { 3.) } 2 x+2 y=6 \\
& -2 x-2 x \\
& \frac{2 y}{\frac{2}{2}}=\frac{-2 x}{2}+\frac{6}{2} \\
& (1.5,1.5)(7,-4)(4,-1) \\
& y=-x+3 \quad y=-(7)+3 \quad y=-(4)+3 \\
& y=-(1.5)+3 \\
& =1.5
\end{aligned}
$$

Today's Goals

I can...

- identify linear functions and linear equations.
- give the domain and range of a linear function.
- graph linear functions that represent real-world situations.

Section 4.1: Identify Linear Functions

Linear Function: a function whose graph is a line; a function that has a constant rate of change

Determining if a graph is a linear function.

You Try These!

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

You Try These!

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Determining if a table or ordered pairs are representing a linear function

Determining if a table or ordered pairs are representing a linear function
If a table represents a linear function, then the x-values MUST change by a constant amount AND the y-values MUST change by a constant amount.

You Try This!

Tell whether the set of ordered pairs $\{(3,5),(5,4),(7,3),(9,2)$, (11, 1) \} satisfies a linear function. Explain.

You Try This!

Tell whether the set of ordered pairs $\{(3,5),(5,4),(7,3),(9,2)$, (11, 1) \} satisfies a linear function. Explain.

$$
\begin{aligned}
& y e s \text {, both } x \text { and } y \\
& \text { increase/desrease by } \\
& \text { a constant number }
\end{aligned}
$$

Determining if an equation is a linear function

A linear equation is any equation that can be written in the slope intercept form shown below.

Slope Intercept Form:

$\mathbf{y}=\mathbf{m x}+\mathbf{b}$ where \mathbf{m} and b are real numbers.

$$
m \text {-slope }
$$

If an equation is not in Slope Intercept Form, you can change it into the form.
$y=4 x-7$

Determining if an equation is a linear function

A linear equation is any equation that can be written in the standard form shown below.

Standard Form of a Linear Equation

$A x+B y=C$ where A, B, and C are real numbers and A and B are not both 0

* find both intercepls

If an'equation is not in Standard Form, you can change it into the form.

$$
y=4 x-7
$$

$$
\begin{gathered}
7 x=-3 y+1 \\
3 y+3 y \\
\hline 7 x+3 y=1
\end{gathered}
$$

$$
2 x-3 y=4
$$

Determining if an equation is a linear function
A linear equation is any equation that can be written in the point-slope form shown below.

Point-Slope Form:
$\left.\sqrt{y-y_{1}}\right)=m\left(x-x_{1}\right)$ where m, y_{1}, and x_{1} are real numbers.

* good for creating equations $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& y-2=4(x-4) \\
& m-4 \\
& p:(4,2)
\end{aligned}
$$

$$
\begin{gathered}
y+2=0.5(x-4) \\
m-0.5 \\
P:(4,-2)
\end{gathered}
$$

$$
\begin{aligned}
& y-2=-4(x+4) \\
& m--4 \\
& p:(-4,2)
\end{aligned}
$$

16. $y=-\frac{2}{5} x-1$
17. $y=-\frac{1}{6} x+1$
18. $y=8$
19. $x=-4$
20. $y=-0.25 x+2$
21. $y=0.125 x-2$
22. $y=-4 x^{3}$
23. $y=\frac{x}{3}+1$
24. $y=-\frac{2}{5} x-1$

$$
\begin{aligned}
& y=-\frac{2}{5} x-1 \\
& +\frac{2}{5} x+\frac{2}{5} x \\
& \frac{2}{5} x+y=-1 \quad \frac{1}{6} x+y=1
\end{aligned}
$$

17. $y=-\frac{1}{6} x+1$
18. $y=8$

19. $y=-0.25 x+2$
20. $y=0.125 x-2$
$0.25 x+y=2$
yes
$-0.125+y=-2$
yes

21. $y=-4 x^{3}$
22. $y=\frac{x}{3}+1$

$$
\begin{gathered}
-\frac{x}{3}+y=1 \\
y \text { es }
\end{gathered}
$$

Rules for determining if an equation is linear (if not in standard for)

1. If the variable x has any exponent other than 1 then the equation is NOT LINEAR

$$
2 x^{(2)}+3 y=8 \quad y=\frac{8-2 x^{0}}{3}
$$

2. If the variable x is in the denominator then the equation is NOT LINEAR

$$
\frac{8}{x}+y=4 \quad y=4-\frac{8}{x}
$$

3. If the variable x is inside the $\sqrt{ }$ sign then the equation is NOT LINEAR

$$
\sqrt{x}+2 y=8 \quad y=4-\frac{\sqrt{x}}{2}
$$

4. If the variable x is multiplied by y then the equation is NOT LINEAR

$$
x y=8 \quad y=\frac{8}{x}
$$

5. If the variable x is the exponent then the equations is NOT LINEAR

6. Must have a y in the equation.

$$
y=\gamma
$$

Linear Function

Application of Linear Functions

Tom has $\$ 20$ that he can spend on roses and carnations. If roses cost $\$ 2$ and carnations cost $\$ 1$, write an equation to represent how many roses and carnations he can purchase, then graph the function. Be sure to identify x and y.

$$
\begin{aligned}
& 2 x+1 y=20 \\
& -2 x+2 x \\
& x \text {-rose } y=-2 x+20 \\
& y \text {-carnation }
\end{aligned}
$$

Application of Linear Functions

Sue rents a manicure station in a salon and pays the salon owner $\$ 5.50$ for each manicure she gives, where x is the number of manicures. Graph this function.

$$
y=5 \cdot 50 x
$$

Application of Linear Functions

Sue rents a manicure station in a salon and pays the salon owner $\$ 5.50$ for each manicure she gives, where x is the number of manicures. Graph this function.

$$
\begin{array}{ll|l}
f(x)=5.50 x & x & y \\
y=5.50 x & 0 & 0 \\
1 & 5.50 \\
11 \\
D: \varepsilon 0,1,2,3 & 3 & 16.50 \\
R i \xi 0,5.5,11,16.5 \ldots
\end{array}
$$

You Try This!

At a salon, Sue can rent a station for $\mathbf{\$ 1 0 . 0 0}$ per day plus $\mathbf{\$ 3 . 0 0}$ per manicure, where \boldsymbol{x} is the number of manicures. Graph this function and give its domain and range.

You Try This!

At a salon, Sue can rent a station for $\mathbf{\$ 1 0 . 0 0}$ per day plus $\$ 3.00$ per manicure. The amount she would pay each day is given by $f(x)=3 x+10$, where x is the number of manicures. Graph this function and give its domain and range.

Did we accomplish our goals for today?

THINK AND DISCUSS

1. Suppose you are given five ordered pairs that satisfy a function. When you graph them, four lie on a straight line, but the fifth does not. Is the function linear? Why or why not?
2. Lu 保 (
3. GET ORGANIZED Copy and complete the graphic organizer. In each box, describe how to use the information to identify a linear function. Include an example.

Homework
 Create 2 scenarios (word problems) that can be represented by a linear equation

