Warm-Up 8/23

Evaluate each expression.

$$
a=3, \quad b=5, \quad c=6
$$

1. $a+5$
8
$3+5$
2. $4 b$
$\underline{20}$
4(5)
3. $20-a \quad \underline{17}$
4. $15-\mathrm{c}$
9 $15-6$
5. $\frac{\frac{18}{c}}{\frac{1 \sigma^{6}}{6}}$
6. $11 \mathrm{~b} \quad \underline{5}$

Today's Goals

I can...

- define functions
- identify functions in all forms
- identify dependent and independent variables

Section 3 ~ Relations and Functions

Relation a pairing between two sets of numbers to create a set of ordered pairs

a special type of relation; a pairing between two sets of numbers in which each element of the first set is paired with exactly one element of the second set
** Each input has a specific output

Two Variables: Independent and Dependent

the variable whose behavior is known or the value is given
value of interest and is determined by the function rule acting upon the independent variable

Work in table groups on the "Input and Output Values"
 Complete the front. Problems 1-4 (except the creating function questions)

Every function can be represented in many different ways
Types of representations:

- verbal description
words
- set of ordered pairs or table

$$
(x, y)
$$

- graphing
- algebraic representation; nth rule
equation

$$
y=2 x^{2} \quad f^{\prime}(x)=3 x \quad A_{n}=2(n-1)
$$

Types of graphs:
Discrete Graph - made of specific points

Continuous Graph - lines and curves

Section 3 ~ Relations and Functions

Relation \(\left.\begin{array}{l}a pairing between two sets of numbers to create a

set of ordered pairs\end{array}\right\}\)| a special type of relation; a pairing between |
| :--- |
| two sets of numbers in which each element |
| of the first set is paired with exactly one |
| element of the second set |
| ** Each input has a specific output |

DDommaiun and \mathbb{R} aungre of al IFumctiom
Domain - input, x values, independent variable

Range - output, y values, dependent variable

1. Look for any repeating x-values. *if none repeat then it is a function.
2. If the x-value repeats then check y value.
3. If the y-value is different, then it is not a function.

Examples:

first determine if the relation is a function.
then list the domain and range
function? yes
domain? $(6,5,4,-1)$
range? $\quad(7,8,9,14)$

1. $(3,0),(4,0),(5,0),(-3,0)$
function:

2. (-2. 1), (-5, 6), (-9, 15), (2, -2)
function:
domain: $(-2,-5$ $,-9,2)$
range:
$(1,6,15,-2)$
$3(-3,4),(4,15),(-3,4)(5,23)$
function:

domain: $(-3,4,5)$
range: \qquad $(4,15,23)$
3. (1,5), $(-3,-7),(2,4)(1,9),(-5,-13)$
function:
domain:

Mapping

Turn to the back of the "Input and Output Values" sheet and complete it.
 (NOT \#6)

KeyConcept Vertical Line Test

How to determine if a graph is a function

Vertical line test.
*draw 3 or more vertical lines
*each line can cross the graph only 1 time
*if it crosses more then it is not a function

How to determine if a graph is a function

Work in table groups on the

 "Key features of Graphs"
Homework Algebra nation

pg. 55-58 (Topic 1) and 67-68 (Topic 6)

Don't do the questions asking you to create a function.

