Warm-Up 8/23							
Evaluate each expression.		a = 3, b = 5,	b = 5,	c = 6			
1.	a + 5			2.	15-c		
3.	4b			4.	<u>18</u> c		
5.	20 - a			6.	116		

Today's Goals

I can...

- define functions
- identify functions in all forms
- identify dependent and independent variables

Section 3 ~ Relations and Functions

Relation

a pairing between two sets of numbers to create a set of ordered pairs

Function

a special type of relation; a pairing between two sets of numbers in which each element of the first set is paired with exactly one element of the second set ** Each input has a specific output

Two Variables: Independent and Dependent (x, input) (y, output)

> the variable whose behavior is known or the value is given

value of interest and is determined by the function rule acting upon the independent variable

Work in table groups on the "Input and Output Values"

Complete the front. Problems 1-4 (except the creating function questions)

1.1 Functions.notebook

Every function can be represented in many different ways

Types of representations:

• verbal description

algebraic representation; nth rule
equation

 $y=2x^{2}$ f(x)=3x An=2(n-1)

Types of graphs:

Discrete Graph - made of specific points

Section 3 ~ Relations and Functions

Relation	a pairing between two sets of numbers to create a set of ordered pairs
Function	a special type of relation; a pairing between two sets of numbers in which each element of the first set is paired with exactly one element of the second set ** Each input has a specific output

Domain and Range of a Function

Domain - input, x values, independent variable

Range - output, y values, dependent variable

- 1. Look for any repeating x-values. *if none repeat then it is a function.
- 2. If the x-value repeats then check y value.
- 3. If the y-value is different, then it is not a function.

Examples: (x,y) (6, 7), (5, 8), (4, 9), (-1, 14) first determine if the relation is a function? $y \in S$ function. domain? (6, 5, 4, -1)then list the domain and range (7, 8, 9, 14)

1. (3, 0), (4, 0), (5, 0), (-3, 0) function: <u>yes</u> 4.5 domain: range: (<u>-5</u>)6), (-9, 15) 2. (-2)1), function: domain: range: 1,6,15 3((-3, 4), (4, 15), (-3, 4)) (5, 23) function: domain: range: 3 4. ((1, 5),)-3, -7), (2, 4) ((1, 9)) (-5, -13) function: domain: range:

Mapping

Turn to the back of the "Input and Output Values" sheet and complete it.

(NOT #6)

How to determine if a graph is a function

Vertical line test.

*draw 3 or more vertical lines

*each line can cross the graph only 1 time

*if it crosses more then it is not a function

How to determine if a graph is a function

Work in table groups on the "Key features of Graphs"

Homework Algebra nation

pg. 55-58 (Topic 1) and 67-68 (Topic 6)

Don't do the questions asking you to create a function.