Interpreting and Creating Exponential Functions

Entry Ticket

- Create a function for the following scenarios. Determine the population after 2 years:

Scenario 1: A bear population that begins with 50 bears in 2000 and increase by 10 every year.

Scenario 2: A colony of bacteria that begins with 50 bacteria and doubles every hour.

Turn and Talk: Compare and contrast the functions and strategies used to model these scenarios with a classmate.

What is the difference between Linear and Exponential Functions?

- Linear functions change by a constant number (think addition and subtraction)
- Exponential functions change by a constant factor (think multiplication and division)

Turn and Talk: identify each of the scenarios from the entry ticket as linear or exponential. Justify your reasoning.

Exponential Functions

There are two main forms of exponential functions:
$f(x)=a b^{x}$ and $a(1+r)^{x}$ OR $a(1-r)^{x}$
$a=$ initial/beginning value
$b=$ change factor
r = growth or decay rate

Interpreting Exponential Functions

Scenario 2 from entry ticket (bacteria):
$a=50$ (bacteria population begins with 50 bacteria)
$b=2$ (bacteria doubles every hour)
X = time (in hours)

$$
\rightarrow f(x)=50\left(2^{x}\right)
$$

Turn and Talk: Evaluate the function for $x=0$. What do you notice about the bacteria population when $x=0$?

Interpreting Exponentials (continued)

B	r	Growth or Decay?	Note
<1	<0	decay	Decreasing by a constant factor
>1	>0	growth	Growing by a constant factor
$=1$	$=0$	Linear growth	Turns into a linear function

Example: Investments

- We invest in a stock that yields a 7% annual return. We begin with an initial investment of $\$ 500$.
- Create a function to model the situation.
- How much money will we have after 5 years?

Example 2

- Tom invested in a stock that unfortunately lost an average of 7% annually. Tom began with an initial investment of $\$ 1500$.
- Create a function to model the situation.
- How much money will Tom have after 8 years?

Example 3

The return of a second stock is modeled by the function, for \dagger years:

$$
f(t)=350(0.9)^{t}
$$

Turn and Talk: What is the initial investment for this scenario? Is the stock making money or losing money? What is the growth/decay rate?

Example 4

- The return of a third stock is modeled by the following function, in \dagger years:

$$
f(t)=1000(1.25)^{\dagger}
$$

Turn and Talk: What is the initial investment for this scenario? Is the stock making money or losing money? What is the growth/decay rate?

Summarizing

- With a classmate, create 1-2 bullet points paraphrasing the most important concepts/ideas from this conversation. Be prepared to share your thoughts with the whole class.

Exit Ticket

- Create a function for the following scenarios. Determine the population after 12 years/hours:

Scenario 1: A bear population that begins with 5 bears in 2000 and double every year.

Scenario 2: A colony of bacteria that begins with 50 million bacteria and is cut by 1/3 every hour due to medicine.

