Warm-up 4-9

Solve the following quadratics. You can use any method you prefer. (square roots, graphing, factoring)

1.
$$x^2 - 2x - 15 = 0$$

2.
$$-4x^2 = 3$$

3.
$$2(x + 6)^2 = 98$$

4.
$$2x^2 - 2x - 4 = 0$$

<u>Warm-up</u> 4-9

Solve the following quadratics. You can use any method you prefer. (square roots, graphing, factoring)

2.
$$\frac{-4x^2}{-4} = \frac{3}{-4}$$

$$x^2 = \frac{3}{-4}$$

$$x^2 = \frac{3}{-4}$$

$$x^2 = \frac{3}{-4}$$

$$x^2 = \frac{3}{-4}$$

Homework Questions?

- **#4** no real solutions
- **#14** 5 seconds

April 09, 2019

Discuss with your partners Perfect Square Trinomials
Write down in your notes some characteristics of
perfect square trinomials.

Today's Goal

I can solve quadratic functions by completing the square

Section 10.7: Solving by Completing the Square

Completing the Square: manipulate the equation to become a perfect square trinomial

Perfect Square Trinomial:

How to Complete the Square:		Algebra
Words	Numbers $x^2 + 6x +$	$x^2 + bx +$
To complete the		
square of $x^2 + bx$,		
add (b/2) ² to the		
expression. This		
forces a perfect		
square trinomial.		

Complete the square to form a perfect square trinomial

$$x^2 + 12x + _{---}$$

$$x^2 - 5x + ____$$

Solving quadratic equation by Completing the Square

- **Step 1** Write the equation in the form $x^2 + bx = c$.
- **Step 2** Find $\left(\frac{b}{2}\right)^2$.
- **Step 3** Complete the square by adding $\left(\frac{b}{2}\right)^2$ to both sides of the equation.
- Step 4 Factor the perfect-square trinomial.
- Step 5 Take the square root of both sides.
- **Step 6** Write two equations, using both the positive and negative square root, and solve each equation.

Example:

$$x^{2} + 14x = 15$$

$$x^{2} + 14 \times 449 = 15 + 49$$

$$x + 7 = 18$$

$$x + 7 = 8$$

$$x + 7 = 8$$

Solve by completing the square.

$$x^2 + 10x = -9$$

$$x^2 - 8x - 5 = 0$$

$$-2x^2 + 12x - 20 = 0$$

$$3x^2 - 5x - 2 = 0$$

Solve by completing the square.

30ve by completing the square.

$$x^{2} + 10x = -9$$

$$(\frac{1}{2})^{2} = (\frac{10}{2})^{2} = 2.5$$

$$x^{2} + 10x + 2.5 = -9 + 2.5$$

$$x + 5 = -4$$

$$x + 5 = -4$$

$$x^{2} - 8x - 5 = 0$$

$$x^{2} - 8x + 16 = 5 + 16$$

$$x - 4 = \pm \sqrt{2}$$

$$x - 4 = -10 + 19$$

$$x - 5 = -76$$

Before you leave...

Tell how to solve a quadratic in the form $x^2 + bx = c = 0$ using the completing the square method.

Then show your knowledge by solving the problem below.

Solve by completing the square.

$$x^2 - 4x - 12 = 0$$

Homework

pg. 579 #3-9 (odd), 17

GUIDED PRACTICE

- 1. Vocabulary Describe in your own words how to complete the square for the equation $1 = x^2 + 4x$.
- SEE EXAMPLE 1 Complete the square to form a perfect-square trinomial.

2.
$$x^2 + 14x + \dots$$

3.
$$x^2 - 4x + 1$$

3.
$$x^2 - 4x +$$
 4. $x^2 - 3x +$

Solve by completing the square.

SEE EXAMPLE 2 5.
$$x^2 + 6$$

6.
$$x^2 - 8x = 9$$

7.
$$x^2 + x = 30$$

SEE EXAMPLE
 2
 5.
$$x^2 + 6x = -5$$
 6. $x^2 - 8x = 9$
 7. $x^2 + x = 30$

 8. $x^2 + 2x = 21$
 9. $x^2 - 10x = -9$
 10. $x^2 + 16x = 9$

 SEE EXAMPLE
 3
 11. $-x^2 - 5x = -5$
 12. $-x^2 - 3x + 2 = 0$
 13. $-6x = 3x^2 + 3x = 1$

9.
$$x^2 - 10x = -9$$

10.
$$x^2 + 16x = 91$$

11.
$$-x^2 - 5x = -5$$

12.
$$-x^2 - 3x + 2 = 0$$

13.
$$-6x = 3x^2 + 9$$

14.
$$2x^2 - 6x = -10$$

14.
$$2x^2 - 6x = -10$$
 15. $-x^2 + 8x - 6 = 0$

16.
$$4x^2 + 16 = -24x$$

SEE EXAMPLE 4 17. Multi-Step The length of a rectangle is 4 meters longer than the width. The area of the rectangle is 80 square meters. Find the length and width. Round your answers to the nearest tenth of a meter.

