

Find the max or min, zeros, and domain and range for the following quadratics.

1. $x^{2}-2 x+4=y$
2. 



Warm-np 4/4
Find the max or min, zeros, and domain and range for the following quadratics.

$$
X=\frac{-b}{2 a}
$$

1. $x^{2}-2 x+4=y$

$$
\begin{aligned}
& a=1 \\
& b=-2 \\
& c=4
\end{aligned}
$$

$$
(1)^{2}-2(1)+4
$$



$$
1-2+4=3 \text { no real zeros }
$$

3. $(x+2)^{2}=4$

$$
(x+2)(x+2)=4
$$

$$
\begin{array}{r}
\begin{array}{r}
x^{2}+4 x+4 \\
-4
\end{array}=4 \\
\hline
\end{array}
$$

$$
\begin{gathered}
x^{2}+4 x=0 \\
a=1 \quad x=\frac{-4}{2(1)}=-2 \\
b=4 \quad(-2)^{2}+4(-2) \\
c=0 \quad 4-8=-4
\end{gathered}
$$



Wearm-up 4/4
Find the max or min, zeros, axis of symmetry, and domain and range for the following quadratics. $x=\frac{-5}{2 a}$
1.

$$
\begin{aligned}
& 1 x^{2}-2 x+4=0 \\
& \max \notin(1,3) \quad x=\frac{-(-2)}{2(1)}=1 \\
& \min (\varnothing \\
& \text { zeros: } \\
& \text { axis of symmetry: } x=1 \\
& D: x \in \mid R \\
& R: y \geq 3
\end{aligned}
$$

3. $(x+2)^{2}=4$

$$
\frac{(x+2)^{2}=4}{-4-4} \begin{gathered}
(x+2)^{2}-4
\end{gathered}=0
$$

$$
m a x: \phi
$$

$$
\min (-2,-4)
$$

$$
\begin{gathered}
(x+2)(x+2)-4=0 \\
x^{2}+4 x+4-4=0 \\
x^{2}+4 x=0
\end{gathered}
$$

Zeros


$$
x^{2}+2 x+2 x+4
$$

$$
(-4,0)(0,0)
$$

axis of symmetry

$$
x=-2 \quad x=\frac{-(4)}{2(1)}=-2
$$

$D: x \varepsilon \mathbb{R}$
$R: y \geq-4$

Homework Questions?

$$
\text { \#11 } y=2 x^{2}+3 x-4 \quad x=\frac{-b}{2 a}
$$

## Project:

- Each unit should be on a new $1 / 2$ page (front and back)
> each unit should have definitions, examples, and process steps if needed
> there are 9 units
- Be sure to have all major concepts from each unit
- Be creative and show your style on your project


# Project Due Dates 

April 11th: units 6-8
April 18th: units 4-5
April 25th: units 1-3
May 2nd: unit 9
Final Project Due May 9th


I can...

- solve quadratic equations by graphing
- solve quadratic equations by factoring

Try These!!

$$
x=\frac{-b}{2 a}
$$

Find the vertex of the graph of the following:

$$
\begin{aligned}
y & =0.25 x^{2}+2 x+(-4,-1) \\
x & =\frac{-(2)}{2(0.25)}=-4 \\
y & =0.25(-4)^{2}+2(-4)+3 \\
& =4+-8+3=-1 \\
y & =-3 x^{2}+6 x-7 \\
x & =\frac{-(6)}{2(-3)}=1 \\
y & =-3(1,-4)^{2}+6(1)-7 \\
& =-3+6-7=-4
\end{aligned}
$$

Think and Discuss...

1. How do you find the zeros of a function from its graph?
2. Describe how to find the axis of symmetry of a quadratic function if its graph does not cross the $x$-axis
3. Sketch a graph that fits the given description.
a. Opens upward, has 2 zeros
b. Opens downward, has no zeros


I can...

- solve quadratic equations by graphing - solve quadratic equations by factoring

Section 10.2: Characteristics of a Quadratic

x-intercept -where the graph crosses the $x$-axis (the $y$-value is always 0 ; $(x, 0)$
Zero of a function:
Zeros: x-intercepts; where the graph (parabola) crosses the x -axis

$$
\begin{aligned}
& \text { (-1, } \\
& y=x^{2}-x-2 \\
& y=(-1)^{2}-(-1)-2 \\
& \\
& =1+1-2=0 \\
& y=(2)
\end{aligned}
$$

Section 10.5: Solving by Graphing and Fractoring
Quadratic Equations:
Functions- $y=a x^{2}+b x+c$ or $f(x)=a x^{2}+b x+c$
Equations-specific solutions;
zeros of the quadratic- $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ *must be set $=0$

Solve each equation by graphing the related function using your graphing calculator.
$x^{2}+5=4 x$


## CHECK WITH YOUR NEIGHBOR

$$
x^{2}-8 x-16=2 x^{2}
$$

$$
6 x+10=x^{2}
$$

Try These:
CHECK WITH YOUR NEIGHBOR



# Log into Desmos and use the following code. 

2B: ZBE3V8
3B: PN388R
4B: UJJWXB

Solving Quadratics by factoring
The Zero Product Property
If the product is 0 , then one or more of the factors must be zero.
If $a b=0$, then $a=0$ and/or $b=0$

$$
(0) b=0 \quad a(0)=0 \quad(0)(0)=0
$$

Using the zero product property

$$
\begin{aligned}
& (x)(x+4)=0 \\
& x=0 \text { or } x+4=0 \\
& x=-4-4 \\
& x=-4
\end{aligned}
$$

$$
(x+4)(x-3)=0
$$

$$
\begin{aligned}
& x+4=0 \text { or } \begin{array}{l}
x-3=0 \\
-4-4 \\
x=-4
\end{array} \\
& \hline x=3
\end{aligned}
$$

If an equation is written in standard form, you may need to factor before using the property to solve the equation.
Example:

$$
\begin{gathered}
x^{2}+7 x+10=0 \\
x+2=0 \\
x=-2 \\
x=-2
\end{gathered}
$$

$$
\begin{aligned}
& x+5=0 \\
& -5=5
\end{aligned}
$$

$$
x=-5
$$

$$
\begin{gathered}
x^{2}+2 x=8 \\
\frac{-8}{}-8 \\
x^{2}+2 x-8 \\
x-2=0 \\
x=2 \\
x+4=0 \\
x=-4 \\
x^{2}+2 x+1=0
\end{gathered}
$$




$$
\begin{aligned}
& \text { Try These: } \\
& x^{2}-6 x+9=0
\end{aligned}
$$

$$
30 x=-9 x^{2}-25
$$

$$
3 x^{2}-4 x+1=0
$$

Try These:

$$
\begin{gathered}
x^{2}-6 x+9=0 \\
(x-3)(x-3)=0 \\
x=3
\end{gathered}
$$

$$
30 x=-9 x^{2}-25
$$

$$
9 x^{2}+30 x+25=0
$$

$$
(3 x+5)^{2}=0
$$

$$
\frac{3 x+5=0}{-5=-5} \begin{array}{|c}
3 x=-\frac{5}{3}
\end{array}
$$

$$
\begin{aligned}
& 3 x^{2}-4 x+1=0 \\
& (3 x-1)(x-1)=0 \\
& (x=1 / 3,1) \frac{-1}{3}-\frac{3}{3}=-1
\end{aligned}
$$




# Homework 

pg. 557 \#3-5, 14
pg. 565 \# 1-11 (odd), 19


1. Vocabulary Write two words related to the graph of a quadratic function that can be used to find the solution of the related quadratic equation.

SEE EXAMPLE 1 Solve each equation by graphing the related function.
2. $x^{2}-4=0$
3. $x^{2}=16$
4. $-2 x^{2}-6=0$
5. $-x^{2}+12 x-36=0$
6. $-x^{2}=-9$
7. $2 x^{2}=3 x^{2}-2 x-8$
8. $x^{2}-6 x+9=0$
9. $8 x=-4 x^{2}-4$
10. $x^{2}+5 x+4=0$
11. $x^{2}+2=0$
12. $x^{2}-6 x=7$
13. $x^{2}+5 x=-8$
14. Sports A baseball coach uses a pitching machine to simulate pop flies during practice. The quadratic function $y=-16 x^{2}+80 x$ models the height of the baseball after $x$ seconds. How long is the baseball in the air?

## 8-6

## Exercises

## GUIDED PRACTICE

SEE EXAMPLE 1 Use the Zero Product Property to solve each equation. Check your answer.

1. $(x+2)(x-8)=0$
2. $(x-6)(x-5)=0$
3. $(x+7)(x+9)=0$
4. $(x)(x-1)=0$
5. $(x)(x+11)=0$
6. $(3 x+2)(4 x-1)=0$

SEE EXAMPLE 2 Solve each quadratic equation by factoring. Check your answer.
7. $x^{2}+4 x-12=0$
8. $x^{2}-8 x-9=0$
9. $x^{2}-5 x+6=0$
10. $x^{2}-3 x=10$
11. $x^{2}+10 x=-16$
12. $x^{2}+2 x=15$
13. $x^{2}-8 x+16=0$
14. $-3 x^{2}=18 x+27$
15. $x^{2}+36=12 x$
16. $2 x^{2}+5 x-3=0$
17. $2 x^{2}+7 x+6=0$
18. $2 x^{2}+6 x=-18$

SEE EXAMPLE
19. Games A group of friends tries to keep a beanbag from touching the ground. On one kick, the beanbag's height can be modeled by $h=-16 t^{2}+14 t+2$, where $h$ is the height in feet above the ground and $t$ is the time in seconds. Find the time it takes the beanbag to reach the ground.

