

1. Is $y+x^{2}=3$ quadratic? Explain.
2. Use a table of values to graph $y=-1 / 2 x^{2}$

Use the graph below to answer the following.

3. Identify the vertex.
4. Find the domain and range.

5. Does the function have a maximum or minimum? What is it?

1. Is $y+x^{2}=3$ quadratic? Explain.

2. Use a table of values to graph $y=-1 / 2 x^{2} \quad a \neq 0$ $\left.y=-\frac{1}{2}-4\right)$

$$
\begin{aligned}
y & =-\frac{1}{2}(-2)^{2} \\
& =-\frac{1}{2}(4)=-2
\end{aligned}
$$

Use the graph below to answer the following.
3. Identify the vertex. $(-5,3)$)
4. Find the domain and range.

5. Does the function have a maximum or minimum? What is it?

$$
\max (-5,3)
$$

I can...

- find the axis of symmetry of a quadratic given an equation
- find the vertex from a quadratic equation
- graph quadratic functions
- apply quadratics

Axis of Symmetry

Definition: a vertical line that divides the parabola into 2 identical pieces.
\qquad

Method 1: Using Zerodmethod only works if there are zeros.

Try Jhese!!

Try Jhese!!
Find the axis of symmetry of each parabola

Method 2: Formula
Quadratic MUST be in the form $y=a x^{2}+b x+c$ axis of symmetry is the vertical line $x=-\frac{b}{2 a}$

$$
y=2 x^{2}+4 x+5
$$

$$
\begin{aligned}
& a=2 \\
& b=4 \\
& c=5
\end{aligned}
$$

$$
x=-1
$$

$$
y=-3 x^{2}+10 x+9
$$

$$
x=1,0
$$

Finding Vertex

$$
y=-x^{2}-2 x
$$

$$
\begin{aligned}
& y=-x \\
& a=-1 \\
& b=-2 \\
& c=0
\end{aligned} \quad x=\frac{-(-2)}{2(-1)}
$$

$$
y=-1(-1)^{2}-2(-1)
$$

$$
y=-1+2
$$

$$
y=1
$$

$$
y=x^{2}-4 x-10
$$

$$
a=1
$$

$$
b=-4
$$

$$
c=-10
$$

$$
y=(2)^{2}-4(2)-10
$$

$$
y=4-8-10
$$

$$
\bar{y}=-14
$$

$$
x=\frac{-b}{2 a}
$$

Step 1: Find axis of symmetry
Step 2: Substitute
Step 3: Write as ordered pair

$$
x=\frac{-b}{2 a}
$$

Try गhese!!
Find the vertex of the graph of the following:

$$
y=0.25 x^{2}+2 x+3
$$

$$
y=-3 x^{2}+6 x-7
$$

Try These!!

Find the vertex of the graph of the following:

$$
\begin{aligned}
& y=0.25 x^{2}+2 x+3 \\
& a=0.25 \quad(-4,-1) \\
& b=2 \\
& c=3 \quad x=\frac{-2}{2(0.25)}=-4
\end{aligned}
$$

$$
\begin{aligned}
& y=-3 x^{2}+6 x-7 \quad(1,-4) \\
& a=-3 \\
& b=6 \\
& c=-7
\end{aligned} \quad x=\frac{-6}{2(-3)}=1
$$

Section 10.3: Graphing Quadratic Functions
What information have we learned to find from a quadratic?
has an x^{2}

* points
forms a parabola constant $2^{\text {nd }}$ difference
*x-intercept (zeros)
* y-intercept
* graph
* table
vertex
axis of symmetry
up or down
narrow or wide * Domain
* Range
* max or min

Think and Discuss...

1. How do you find the zeros of a function from its graph?
2. Describe how to find the axis of symmetry of a quadratic function if its graph does not cross the x-axis
3. Sketch a graph that fits the given description.
a. Opens upward, has 2 zeros
b. Opens downward, has no zeros

Project:

- Each unit should be on a new $1 / 2$ page (front and back)
> each unit should have definitions, examples, and process steps if needed
$>$ there are 9 units
- Be sure to have all major concepts from each unit
- Be creative and show your style on your project

$$
\begin{aligned}
& \text { USA TestPrep Practice-(Quad/Expon) } \\
& \text { pg. } 535 \text { \#3-15 (odd), } 18 \\
& \text { pg. } 541 \text { \#1-7 (odd) }
\end{aligned}
$$

SEE EXAMPLE 1 Find the zeros of each quadratic function from its graph. Check your answer.

pg. 535

3. $y=x^{2}+2 x+1$

4. $y=9-x^{2}$

5. $y=-x^{2}-x-4$

SEE EXAMPLE 2 Find the axis of symmetry of each parabola.
6.

7.

8.

SEE EXAMPLE 3 For each quadratic function, find the axis of symmetry of its graph.
9. $y=x^{2}+4 x-7$
10. $y=3 x^{2}-18 x+1$
11. $y=2 x^{2}+3 x-4$
12. $y=-3 x^{2}+x+5$

SEE EXAMPLE 4 Find the vertex.
13. $y=-5 x^{2}+10 x+3$
14. $y=x^{2}+4 x-7$
15. $y=\frac{1}{2} x^{2}+2 x$
16. $y=-x^{2}+6 x+1$

SEE EXAMPLE 5 18. Archery The height in feet above the ground of an arrow after it is shot can be modeled by $y=-16 t^{2}+63 t+4$. Can the arrow pass over a tree that is 68 feet tall? Explain.

GUIDED PRACTICE

SEE EXAMPLE 1

Graph each quadratic function.

1. $y=x^{2}-2 x-3$
2. $-y-3 x^{2}=-3$
3. $y=2 x^{2}+2 x-4$
4. $y=x^{2}+4 x-8$
5. $y+x^{2}+5 x+2=0$
6. $y=4 x^{2}+2$

SEE EXAMPLE 2

7. Multi-Step The height in feet of a golf ball that is hit from the ground can be modeled by the function $f(x)=-16 x^{2}+96 x$, where x is the time in seconds after the ball is hit. Find the ball's maximum height and the time it takes the ball to reach this height. Then find how long the ball is in the air.
