

For each quadratic, solve using the quadratic formula, find the axis of symmetry, and find the vertex of its graph.

2.
$$y = -2x^2 - 4$$
 3. $0 = x^2 + 8x + 16$

Warn -up 4-16

Graph the following quadratic function.

1. $y - 1 = 4x^{2} + 8x$ $y - 1 = 4x^{2} + 8x$ $y = 4x^{2} + 8x + 1$

For each quadratic, solve using the quadratic formula, find the

Today's Goal

I can graph and transform quadratic functions.

Section 10.4: Transforming Quadratic Functions

Parent Function

 $y = x^2$

$$y = -x^2$$

Compare to the parent function.

What changed from the parent function graph?

It reflected over the x-axis.

What changed from the parent function equation:

a became negative **Conclusions:**

Changing the sign flips the quadratic.

Transformation: reflection

$$y = x^2 + 3$$

What changed from the parent function graph?

It moved up 3 spaces.

What changed from the parent function equation:

It added 3 (c).

Conclusions:

Adding a positive c moved the graph up.

Transformation: Vertical shift up

$$y = x^2 - 5$$

What changed from the parent function graph?

It moved down 5 spaces.

What changed from the parent function equation:

They subtracted 5 (c).

Conclusions:

When you subtract a positive c, the graph moves down.

Transformation: Vertical Shift down

 $y = 8x^2$

What changed from the parent function graph?

It got narrower.

What changed from the parent function equation:

A was a whole number.

Conclusions:

When a is a whole number greater than 1, the graph gets narrower.

Transformation: Vertical stretch

$$y = 1/4 x^2$$

What changed from the parent function graph?

The graph got wider.

What changed from the parent function equation:

a was a fraction.

Conclusions:

When a is a fraction, it gets wider.

Transformation: Vertical shrink.

$$y = x^2 + 4x$$

What changed from the parent function graph?

It moved left/down.

What changed from the parent function equation:

We added a bx

Conclusions:

When you add a bx, it moves left/down or left/up

Transformation: Horizontal shift

$$y = x^2 - 4x$$

What changed from the parent function graph?

It moved right/down.

What changed from the parent function equation:

We added a negative bx

Conclusions:

When you add a bx, it moves right/down or right/up

Transformation: Horizontal shift

 $y = x^{2} - 3x + 16$ (x is pos) (x is pos) y = 16moves right f(x) = -4x² + 12x - 3 Jeft dawn facing narrow (stretch) $g(x) = -2x^2 - 347$ Facing dawn 347 harrow(stratch)

<u>Before you leave...</u>

On the index card:

Describe how the graph $f(x) = x^2 + c$ differs from the graph of the parent function when the value of c is positive and when c is negative.

Tell how to determine whether a graph is wider or narrower by looking at the function.

Application

The height in feet of a football that is kicked can be modeled by the function $f(x) = -16x^2 + 64x$, where x is the time in seconds after it is kicked. Find the football's maximum height. Then find how long the football is in the air.

Step 3: Solve

Step 4: Look Back

Does this make sense?

Homework

Worksheet