${ }^{\text {Wharm -up 4-16 }}$
Graph the following quadratic function.

1. $y-1=4 x^{2}+8 x$

For each quadratic, solve using the quadratic formula, find the axis of symmetry, and find the vertex of its graph.
2. $y=-2 x^{2}-4$
3. $0=x^{2}+8 x+16$

Warm -up 4-16
Graph the following quadratic function.

1. $y-1=4 x^{2}+8 x$

$$
\frac{y+1}{y=4 x^{2}+8 x+1}
$$

For each quadratic, solve using the quadratic formula, find the axis of symmetry, and find the vertex of its graph.
2. $y=-2 x^{2}-4 \quad \mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
c=-4
$$

$$
X=\frac{0 \pm \sqrt{-32}}{-4}
$$

$$
\begin{aligned}
& \text { } \begin{array}{l}
3.0=1 \\
b=8 \\
b=16 \\
c=\frac{-8 \pm+16}{8^{2}-4(1)(16)} \\
2(1) \\
\\
\\
x=\frac{-8 \pm \sqrt{0}}{2} \\
\\
\end{array} x=\frac{-8}{2}=-4
\end{aligned}
$$

x-no real solution

$$
\begin{gathered}
x=\frac{-b}{2 a}=\frac{-0}{2(-2)}=0 \\
x=0 \quad(0,-4)
\end{gathered}
$$

$$
y=-2(0)-4
$$

$$
y=-4
$$

Graph the following functions on the same coordinate plane. $f(x)=x^{2}$

$$
g(x)=x^{2}+3
$$

$$
h(x)=x^{2}-2
$$

Graph the following functions on the same cogrdinate plane. $f(x)=x^{2}$

$$
g(x)=x^{2}+3
$$

$$
h(x)=x^{2}-2
$$

I can graph and transform quadratic functions.

Section 10.4: Transforming Quadratic Fownetions Parent Function

$$
y=x^{2}
$$

$$
y=-x^{2}
$$

Compare to the parent function.
What changed from the parent function graph?

It reflected over the x-axis.
What changed from the parent function equation:
a became negative
 Conclusions:

Changing the sign flips the quadratic.
Transformation: reflection

Graph

$$
y=x^{2}+3
$$

What changed from the parent function graph?

It moved up 3 spaces.
What changed from the parent function equation:

It added 3 (c).

Conclusions:

Adding a positive c moved the graph up.

Transformation:Vertical shift up

Graph

$y=x^{2}-5$
What changed from the parent function graph?
It moved down 5 spaces.
What changed from the parent function equation:

They subtracted 5 (c).

Conclusions:

When you subtract a positive c, the graph moves down.

Transformation:Vertical Shift down

It got narrower.
What changed from the parent function equation:

A was a whole number.

Conclusions:

When a is a whole number greater than 1 , the graph gets narrower.
Transformation: Vertical stretch

Graph
$y=1 / 4 x^{2}$
What changed from the parent function graph?

The graph got wider.
What changed from the parent function equation: a was a fraction.

Conclusions:

When a is a fraction, it gets wider.
Transformation: Vertical shrink.

What changed from the parent function graph?

It moved left/down.
What changed from the parent function equation:

We added a bx

Conclusions:

When you add a bx, it moves left/down or left/up
Transformation: Horizontal shift

Graph
$y=x^{2}-4 x$
What changed from the parent function graph?

It moved right/down.
What changed from the parent function equation:

We added a negative bx

Conclusions:

When you add a bx, it moves right/down or right/up
Transformation: Horizontal shift

Transformation Wrap-up

Transformation Wrap-up

moved up $1 G^{6}$
moves right

$$
f(x)=\frac{-4 x^{2}+12 x-3}{\text { left }}
$$

down facing

down 3 spaces narrow (stretch)

$$
g(x)=\frac{-2 x^{2}-347}{\text { down facing }} \text { down } 347
$$

narrow (stretch

Before you leave...
On the index card:
Describe how the graph $f(x)=x^{2}+c$ differs from the graph of the parent function when the value of c is positive and when c is negative.

Tell how to determine whether a graph is wider or narrower by looking at the function.

Application

The height in feet of a football that is kicked can be modeled by the function $f(x)=-16 x^{2}+64 x$, where x is the time in seconds after it is kicked. Find the football's maximum height. Then find how long the football is in the air.

Step 1: Understand the problem

What is the answer going to include?

$$
\begin{array}{cc}
\text { max } & -16(4)^{2}+64(4) \\
2^{\text {nd }} x \text {-intercept } & -256+256=0 \\
\text { Important information: } & x=4 \\
\text { calculi } & x=\frac{-64}{2(-16)}=2 \\
X=\frac{-b}{2 a} & -16(2)^{2}+64(2) \\
\text { Step 2: Make a plan } & =64 \\
\text { What are we going to do? } &
\end{array}
$$

Step 3: Solve

Step 4: Look Back
Does this make sense?

Homework

Worksheet

