<u>Warm-up</u> 4-11

Solve using square roots. Check your answer.

- 1. $x^2 195 = 1$
- 2. $4x^2 18 = -9$
- 3. $(x + 7)^2 = 81$
- 4. Solve $0 = -5x^2 + 225$. Round to the nearest hundreth.

Solve by completing the square.

5. $x^2 - 4x - 12 = 0$

<u>Warm-up</u> 4-11

Solve using square roots. Check your answer.

4. Solve 0 = $-5x^2 + 225$. Round to the nearest hundreth. $\frac{-225}{-225} - \frac{5x^2}{-5} = \frac{5x^2}$

Solve by completing the square. 5. $x^2 - 4x - 12 = 0$ $\left(\frac{b}{2}\right)^2 = \left(\frac{-4}{2}\right)^2 = 4$ $x^2 - 4x + 4 = 12 + 4$ $\sqrt{(x-2)^2} = \sqrt{6}$ $x - 2 = \pm 4$ $x - 2 = \pm 4$ x - 2 = 4 x - 2 = -4 x - 2 = -4x - 2 = -4

Today's Goal

I can solve quadratic equations by using the Quadratic Formula

Section 10.7: Solving Quadratics using the Formula

Quadratic Formula

X	=	$-b \pm \sqrt{b^2}$	- 4ac)
		2a	

Try this!

$$2x^{2} + 4x + 3 = 0$$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

The Discriminant

- $b^2 4ac = 0$ **1 solution**
- $b^2 4ac > 0$ **2 solutions**

Use the discriminant to determine the number of solutions

 $3x^2 + 10x + 2 = 0$

 $9x^2 - 6x + 1 = 0$

 $x^2 + x + 1 = 0$

The Discriminant

Tells us how many solutions we can expect.

- $b^2 4ac < 0$ no real solution
- $b^2 4ac = 0$ **1 solution**

 $b^2 - 4ac > 0$ **2 solutions**

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Use the discriminant to determine the number of

b²-4ac (10)²-4(3)(2) 100-24 76 2 solutions

 $9x^{2} - 6x + 1 = 0$ $\alpha = 9 \quad (-6)^{2} - 4(9)(1),$ $b = -6 \quad 36 - 36 = 0$ $(= 1) \quad (1 \text{ solution})$ $\chi = \frac{-(-6) \pm 50}{2(9)}$ $\chi = \frac{-(-6) \pm 50}{2(9)}$ $\chi = \frac{-(-6) \pm 50}{2(9)}$

 $x^2 + x + 1 = 0$ (1)²-4(1)(1) a=1
 1-4(=-3 (=1)
 (no real solution)

Examples! Determine how many solutions each quadratic will have Then solve it.

$$3x^2 - 7x = 12$$

$$x^2 + x - 1 = 0$$

$$5x^2 - 2x + 15 = 3x$$

Homework

pg. 587 #5-17 (odd), 23 USATestPrep Practice

