Warm-up 3-7 Factor each trinomial.

- **1.** $5x^2 18x 8$
- **2.** Factor the perfect-square trinomial $16x^4 + 40x^2y + 25y^2$
- **3.** Factor $9x^2 25y^2$ using the difference of two squares

Factor Completely, write prime if prime.

- 1. $2x^2 8$
- 2. $2x^2 + 8x + 6$
- **3**. $3n^2 + 9n 30$
- 4. $6x^2 26x 20$
- **5**. $2x^2 + 12x 80$
- 6. $5t^2 + 15t + 10$
- **7**. $8n^2 18$
- 8. $14x^2 + 7x 21$

9. $4x^2 + 16x + 16$ 10. $18x + 12x^2 + 2x^3$ 11. $2x - 2xy^2$ 12. $3t^3 - 27t$ 13. $24a^2 - 30a + 9$ 14. $10x^2 + 15x - 10$ 15. $3x^2 - 42x + 147$ 16. $4x^4 - 4x^2$

$$4x^{2}(x^{2}-1)$$

(x)²-(1)²

$$(4x^{2}(x+1)(x-1))$$

X	I. Extra: Factoring by Grouping
6a	$ \begin{aligned} x - 2b - 3a + 4bx &= 6ax - 3a + 4bx - 2b \\ &= 3a(2x - 1) + 2b(2x - 1) \\ &= (2x - 1)(3a + 2b) \end{aligned} $
1. $x^{2} + 2x + xy + 2y$ 2. $3a^{2} - 2b - 6a + ab$ 3. $t^{3} - t^{2} + t - 1$ Hint: $t - 1 = 1(t - 1)$ 4. $10 + 2t - 5s - st$ 5. $\frac{2}{3}bc - \frac{14}{3}b + c - 7$	8. $n^2 + 2n + 3mn + 6m$ 9. $2ax^2 + bx^2 - 2ay^2 - by^2$ 10. $yz^2 - y^3 + z^3 - y^2z$ 11. $y^3 - y^2 - 4y + 4$ 12. $x^2a + x^2b - 16a - 16b$
6. $4u^{2} + v + 2uv + 2u$ 7. $ad + 3a - d^{2} - 3d$ $\left(\frac{3}{4} - \frac{2}{4} + \frac{2}{4$	$\begin{array}{c} 13. \ x^{3} + x^{2} - x - 1 \\ 14. \ a^{3} - a^{2} - 8a + 8 \end{array}$ $(3a^{2} - 2b) \left(6a + ab \right)$
t = t = t = t t = t = t t = t = t	(3a-6a)+(2b+ab) - $2ba$ - $2b$ - ab
$(t-1)(t^2+1)$	(a-2)(3a+6) (a-2)(3a+6)

I can...

- choose an appropriate method for factoring a polynomial.
- combine methods for factoring a polynomial.

 $(2x^{3}-6x^{2})+(3x-9)$ - 3 × $\times \times$ +3(x-3) $(X-3)(2x^{2})$ $(8 \times ^{3} - 6 \times ^{2}) + 4 \times + 3)$ -2:2× 3 $(+4)^{(4)} \times (-3)^{(+4)} \times (+3)^{(+4)} \times (-3)^{(+4)} \times ($ $(4 \times -3)($ 22211

10

$$a^{2} \pm 2ab + b^{2} = (a \pm b)^{2}$$

$$x^{2} \pm 10x + 25$$

$$(x)^{2} 2(x)(5) (5)^{2}$$

$$x = \frac{x + 5}{5x + 25}$$

$$(x + 5)^{2}$$

$$x^{2} \pm 10x + 25 - x^{2}$$

$$49 \times 056 \times 16$$

 $(7 \times 2)^{2} 2(7 \times 1)^{2}$
 $(7 \times 2 - 4)^{2}$

12

Copy the graphic	Factoring Methods	
organizer. Draw an	Polynomial	Method
arrow from each	1. $16x^4 - 25y^8$	A. Factoring out the GCF
expression to the	2. $x^2 + 10x + 25$	B. Factoring by grouping
method you would	3. $9t^2 + 27t + 18t^4$	C. Unfactorable
use to factor it.	4. <i>a</i> ² + 3 <i>a</i> - 7 <i>a</i> - 21	D. Difference of two squares
	5. $100b^2 + 81$	E. Perfect-square trinomial

Homework 8 problems or #12, 13, 15, 18