

Norm-up 3-5
Factor the following trinomials.

1. $p^{2}-2 p-15$
2. Let x be any real number. Then the statement $x^{3}>0$ is true for
A. $x>0$ only.
B. $x<0$ only.
3. $4 n^{2}-15 n-25$
C. no values of x.
D. all real values of x.

$5 x^{2}+19 x+12$
$2 m^{2}+5 m+2$
$7 a^{2}+53 a+28$
$9 k^{2}+66 k+21$

Examples

$$
\begin{aligned}
& 3 n^{2}-8 n+4 \\
& a=3 \\
& -2=\frac{-6}{3} / \frac{-2}{3} \\
& b=-8 \\
& c=4 \\
& (n-2)\left(n-\frac{2}{3}\right) \\
& (n-2)(3 n-2) \\
& 5 x^{2}+19 x+12 \\
& 3=\frac{15}{5} / \frac{4}{5} \\
& \begin{array}{ccc}
12=5 & 2,30 & (x+3)\left(x+\frac{4}{6}\right) \\
a=19 & 6,10 & (x+3) \\
c=12 & 3,20 & (x+3)(5 x+4) \\
2 & 15,4 &
\end{array} \\
& 2 m^{2}+5 m+2 \\
& \left.(2 m+1)(m+2)_{2=\frac{4}{2}}\right)^{4} \frac{1}{2} \quad\left(m+\frac{1}{2}\right)(m+2) \\
& \begin{array}{l}
7 a^{2}+53 a+28 \\
(\dot{a}+7)(7 a+4) \quad \frac{196 / 9}{7} / \frac{49}{53}=7\left(a+\frac{4}{0}\right)(a+7)
\end{array} \\
& 9 k^{2}+66 k+21 \\
& (k+7)(9 k+3)=\frac{3}{9} / \frac{189}{66} \frac{63}{9}=7
\end{aligned}
$$

Today's Goal

I can identify and factor special polynomials
£ction 9.5: Factoru*ng Spectid Products
Perfect Square Trinomial

$$
\begin{aligned}
a^{2}+2 a b+b^{2}= & (a+b)(a+b) \text { or }(a+b)^{2} \\
& a \begin{array}{|c|c|}
\hline a^{2} & a b \\
\hline a b & b^{2} \\
& a^{2}+2 a b+b^{2}
\end{array}
\end{aligned}
$$

$a^{2}-2 a b+b^{2}=(a-b)(a-b)$ or $(a-b)^{2}$

$$
a\left[\begin{array}{|c|c}
a & -a b \\
\hline-a b & b^{2} \\
\hline
\end{array} a^{2}-2 a b+b^{2}\right.
$$

Examples
Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

$$
\begin{array}{c|c|}
\hline & x \\
\hline 2 & 2 \\
\hline 2 x & 4 \\
\hline 2 x & 4 \\
\hline
\end{array}
$$

$$
x^{2} \circlearrowleft 14 x+49
$$

$$
(x)^{2} \underset{\substack{2(x)(>) \\ 14 x}}{\downarrow}
$$

$$
9 x^{2}-6 x+4
$$

$$
(3 x)^{2} \downarrow(2)^{2}
$$

$$
\begin{gathered}
2(3 x)(2) \\
12 x
\end{gathered}
$$

Try These!!!
Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

1. $9 x^{2}-15 x+64$
2. $81 x^{2} \oplus 90 x+25$ $(9 x)^{2} \underset{2(9 x)(5)}{90 x}$
3. $4 x^{4}-20 x^{2} z+25 z^{2}$ $\left(2 x^{2}\right)^{2} \quad(5 z)^{2}$

$$
2\left(2 x^{2}\right)(5 z)
$$

$$
20 x^{2} 2
$$

Difference of Two Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

Examples

Determine whether the binomial is a difference of two squares. If so, factor. If not, explain.
$1-4 x^{2}$
$p^{8}-49 q^{6}$
$16 x^{2}+4 y^{5}$

$$
1-y^{2}
$$

$$
(1)^{2}-(y)^{2}
$$

$$
(1+y)(1-y)
$$

$$
\begin{aligned}
& \text { X \#11 } 2 x-2 x y^{2} \\
& -\frac{2}{2}(x) y y \\
& 2 \times\left(1-y^{2}\right) \\
& 2 x(1+y)(1-y) \\
& \# 13 \quad 16 d^{8} \Theta 8 d^{4}+1 \\
& \left(4 d^{4}\right)^{2} \downarrow(1)^{2} \\
& 2\left(4 d^{4}\right)(1) \\
& 8 d^{4} \\
& \left(4 d^{4}-1\right)^{2}
\end{aligned}
$$

$$
3 t^{3}-27 t
$$

$$
\begin{aligned}
& t^{2}-9 \\
& (t)^{2}-(3)^{2} \\
& (t+3)(t-3)
\end{aligned}
$$

$$
\frac{3 t\left(t^{2}-9\right)}{3 t(t+3)(t-3)}
$$

$X 1$
\#5 $5 k^{4}+8 k^{3}-4 k^{2}$

$$
\begin{aligned}
& k^{2}\left(5 k^{2}+8 k-4\right) \\
& k^{2}(5 k-2)(k+2)
\end{aligned}
$$

Groups with 4 or less wrong on the quiz should be working on the problems below.

$$
\mathrm{X}-7,8,15,16
$$

XI-1, 2, 3, 6
XII-1, 2, 3

$$
\begin{aligned}
& \text { Homework } \\
& \text { Worksheet } \\
& \text { X-7, 8, 15, } 16 \\
& \text { XI-1, 2, 3, } 6 \\
& \text { XII-1, 2, } 3
\end{aligned}
$$

