

Determine if the following are quadratic functions. Explain. If it is quadratic, determine if it faces up or down.

1. $y=-x^{2}+3$
2. $y^{2}=x+3$
3.

4. Use a table of values to graph $y=-1 / 2 x^{2}$

Determine if the following are quadratic functions. Explain. If it is quadratic, determine if it faces up or down.

1. $y=\Theta x^{2}+3$

2. $y^{2}=x+3$
no, there is no x^{2}
3.

yes, it's a parabola down
4. Use a table of values to graph $y=-1 / 2 x^{2}$

Review

Describe the ways of ìdentitifying quadratioc functions

I can...

- find the vertex given a graph (max/min)
- determine appropriate domain/range
- find the zeros of a quadratic function from its graph

Maximum and Minimum Values
Vertex-the point where the parabola crosses its axis of symmetry (max or min)

Identify the vertex of each parabola. Then, give the minimum or moximum value of the function.

Identify the vertex of each parabola. Then, give the minimum or moximum value of the function.

Domain and Range

Domain: all possible x-values
Range: all possible y-values

Try Jhese!!
Determine the domain and range of the functions depicted on the graphs below.

Try These!!
Determine the domain and range of the functions depicted on the graphs below.

$x \varepsilon \mathbb{R} \circ(-\infty, \infty)$$y \geq-1$

$$
y \leq 9
$$

Section 10.2: Characteristics of a Quadratic FFunction

 Think back.....x-intercept -where the graph crosses the x-axis (the y-value is always 0; $(x, 0)$

Zero of a function:

Zeros: x-intercepts; where the graph (parabola) crosses the x-axis

$y=x^{2}-x-2$

$y=-2 x^{2}+4 x-2$

$y=1 / 4 x^{2}+1$

Jry Jhese!!

Find the zeros of each quadratic function from its graph. Check your answer.

$y=x^{2}-2 x-3$

$y=x^{2}+8 x+16$

$y=-2 x^{2}-2$

Jry Jhese!!

Find the zeros of each quadratic function from its graph. Check your answer.

$y=x^{2}+8 x+16$
$(-4,0)$

$y=-2 x^{2}-2$

USATestPrep

Project:

- Each unit should be on a new $1 / 2$ page
$>$ there are 9 units
> each unit should have definitions and examples
- Be sure to have all major concepts from each unit
- This will be graded hard, but you have over a month to be working on it
- Be creative and show your style on your project

Homework
 pg. 526 \#17-29 (odd)

SEE EXAMPLE 4 Identify the vertex of each parabola. Then give the minimum or maximum value of the function.
16.

17.

SEE EXAMPLE 5 F

Find the domain and range.
18.

19.

20.

21.

PRACTICE AND PROBLEM SOLVING

Independent Practice					
For	See Exercises				
Example		$	$	$22-25$	1
:---:	:---:				
$26-29$	2				
$30-32$	3				
$33-34$	4				
$35-38$	5				

Extra Practice

 See Extra Practice for more Skills Practice and Applications Practice evercises.Tell whether each function is quadratic. Explain.
22.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-1	0	4	9	15

23. $-3 x^{2}+x=y-11$
24. $\{(0,-3),(1,-2),(2,1),(3,6),(4,13)\}$
25. $y=\frac{2}{3} x-\frac{4}{9}+\frac{1}{6} x^{2}$

Use a table of values to graph each quadratic function.
26. $y=x^{2}-5$
27. $y=-\frac{1}{2} x^{2}$
28. $y=-2 x^{2}+2$
29. $y=3 x^{2}-2$

Tell whether the graph of each quadratic function opens upward or downward. Explain.
30. $y=7 x^{2}-4 x$
31. $x-3 x^{2}+y=5$
32. $y=-\frac{2}{3} x^{2}$

