Warm-up 3-26

1. Write about some things that you did on break.

2. Evaluate $x^2 + 5x$ for x = 4 and x = -3

3. Generate ordered pairs for the function $y = x^2 + 2$ with the given domain.

D: { -2, -1, 0, 1, 2}

1. Write about some things that you did on break.

2. Evaluate $x^{2} + 5x$ for x = 4 and x = -3 (-3)²=(3)(-3) (4)²+5(4) (-3)²+5(-3) 16+20 = 36 9 - 15 = -6

3. Generate ordered pairs for the function $y = x^2 + 2$ with the given domain. (\times, \checkmark)

D: $\{-2, -1, 0, 1, 2\}$ $y = (-2)^{2} + 2$ = 6 $y = (-1)^{2} + 2$ = 2 $y = (-2)^{2} + 2$ = -2 $y = (-2)^{2} + 2$ = -2 = -2 = -2 $y = (-2)^{2} + 2$ = -2=

Joday's Goals

I can

- identify Quadratic functions
- graph a quadratic function
- determine if a quadratic opens upward or downward
- find the minimum and maximum of quadratic functions
- find the domain and range of a quadratic function

Section 10.1: Identify Quadratic Functions

Quadratic function: an expression or equation with a degree of 2. • $u = ax^2 + bx + c$ where $a \neq 0$ $y = 2x^2 + 3x$

- $y = \alpha x^2 + bx + c$ where $\alpha \neq 0$
- graph is always a parabola 🏑 🔨 🐧
- has a constant 2nd difference (for y)

Determine if the function is Quadratic

<u>Try These!</u>

1. { (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)}

2. $y + x = 2x^2$

Graphing Quadratic Functions using a table

9

Discuss with your neighbor:

Do you notice a pattern forming with the functions and their graphs? If yes, Explain. If no, Explain.

<u>Identifying the direction of a Parabola</u>

$$y = 4x^2$$

 vp (narrow)

$$2x^{2} + y = 5$$

$$-\frac{2x^{2}}{y^{2} - 2x^{2}} + 5$$

$$down (narrow)$$

<u>Maximum and Minimum Values</u>

Vertex-the point where the parabola crosses its axis of symmetry (max or min)

Homework

pg. 526 #1-15 (odd)