

1. Write about some things that you did on break.
2. Evaluate $x^{2}+5 x$ for $x=4$ and $x=-3$
3. Generate ordered pairs for the function $y=x^{2}+2$ with the given domain.

D: $\{-2,-1,0,1,2\}$

Warm-up 3-26

1. Write about some things that you did on break.
2. Evaluate $x^{2}+5 x$ for $x=4$ and $x=-3 \quad(-3)^{2}=(-3)(-3)$

$$
\begin{array}{ll}
(4)^{2}+5(4) & (-3)^{2}+5(-3) \\
16+20=36 & 9-15=-6
\end{array}
$$

3. Generate ordered pairs for the function $y=x^{2}+2$ with the given domain. (x, y)

$$
\begin{aligned}
& \text { D: }\{-2,-1,0,1,2\}(-2,6)(-1,3)(0,2)(1,3)(2,6) \\
& \begin{array}{rlrl}
y & =(-2)^{2}+2 & y & =(0)^{2}+2 \\
& =6 & & =2
\end{array} \quad y=(2)^{2}+2 \\
& =6 \\
& y=(1)^{2}+2 \\
& y=(-1)^{2}+2 \\
& =3
\end{aligned}
$$

I can

- ídentìfy Quadrati̇g functions
- graph a quadratía function
- determine îf a quadratíc opens upward or downward - find the minimum and maximum of quadratio functions
- find the domain and range of a quadratit function

Section 10.1: Identify Quadratic Functions
Quadratic function: an expression or equation with a degree of 2 .

- $y=a x^{2}+b x+c \quad$ where $a \neq 0$

$$
y=2 x^{2}+3 x
$$

- graph iss always a parabola

- has a constant End difference (for y)

Determine if the function is Quadratic

From an Equation:

$$
\begin{aligned}
& \frac{y+x=20}{1+x}-x \\
& \begin{array}{l}
y=-x+20 \\
y-10 x^{2} \\
+10 x^{2}-10 x^{2}
\end{array} \quad y \text { yes } \\
& y=10 x^{2}+9
\end{aligned}
$$

Examples
Determine if the following functions are quadratic. $\}(-2,9),(-1,-2),(0,1),(0,-1),(1,0),(2,7)$ I

$$
y=7 x+3
$$

$$
\begin{aligned}
& 2 y+2 x^{2}=6 x+5 \quad \text { yes } \\
& -2 x^{2}-2 x^{2} \\
& \frac{2 y}{\frac{2}{8}}=\frac{-2 x^{2}+6 x+5}{2} \\
& y=-x^{2}+3 x+2.5
\end{aligned}
$$

Try These!

1. $\}\}-2,4),(-1,1),(0,00,, 31,1),(2,4) 2\}$
2. $y+x=2 x^{2}$

Try These!

1. \}(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) 2

$y=2 x^{2}-x$

Graphing Quadratic Functions using a table
Use a table of values to graph each quadratic function.

x	y
-2	8
-1	2
0	0
1	2
2	8

$$
y=2 x^{2}
$$

$$
y=2(-2)^{2}
$$

$$
\begin{aligned}
& =2(4) \\
& =8
\end{aligned}
$$

$y=-4 x^{2}$

x	y
-2	-16
-1	-4
0	0
1	-4
2	-16

Iry These!

$$
y=\frac{1}{3} x^{2}
$$

$y=-2 x^{2}$

Disenss with your neighbor:

Do you notice a pattern forning with the functions and their graphs? If yes, Explain. If no, Explain.

Identifying the direction of a Parabola

$$
\begin{aligned}
& y=4 x^{2} \\
& \text { up (narrow) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
2 x^{2}+y=5 \\
-x^{2}+2 \\
-2 x^{2}
\end{array} \\
& \hline y=-2 x^{2}+5 \\
& \text { down (narrow) }
\end{aligned}
$$

$$
\begin{aligned}
& y=3 x^{2}+8 x \quad \text { narrowest } \rightarrow \text { widest } \\
& f(x)=-2 x^{2}+3 \\
& g(x)=-\frac{1}{8} x^{2} \\
& h(x)=-\frac{1}{2} x^{2}+3 x
\end{aligned}
$$

Maximum and Minimum Values
Vertex-the point where the parabola crosses its axis of symmetry (max or min)

Review

Describe the ways of ìdentīfyying quadratīc functions

Homework
 pg. 526 \#1-15 (odd)

