

Warm-up 2-25

Factor the following trinomials.

1. $p^{2}-2 p-15$
2. $n^{2}+5 n-24$
3. $4 n^{2}-15 n-25$
4. Let x be any real number. Then the statement $x^{3}>0$ is true for
A. $x>0$ only.
B. $x<0$ only.
C. no values of x.
D. all real values of x.

Factor the following trinomial.

3. Let x be any real number. Then the statement $x^{3}>0$ is true for

$p(p+3)-5(p+3)$

2. $\ln ^{2}+5 n-24$
$\left(n^{2}-3 n\right)+(8 n-24)$
$n \cdot n$
$-3(n)$ $2(2) 2 n$

A. $x>0$ only. $(2)^{3}=8(4)^{3}=64$
B. $x<0$ only. $(-2)^{2}=-8(-4)^{3}=-64$
\& no values of x.
D. all real values of x.

$n(n-3)+8(n-3)$
$(n-3)(n+8)$
4. $4 n^{2}-15 n-25$
$\left(4 n^{2}-20 n\right)+(5 n-25)$

$$
\frac{4 n(n-5)+5(n-5)}{(n-5)(4 n+5)}
$$

$$
\begin{array}{r}
\quad-100 \\
\pm 2.50 \\
\pm 20.5 \\
\pm 25.4 \\
\pm 100.1 \\
\pm 10.10
\end{array}
$$

$$
4 n^{2}-15 n-254
$$

$5 x^{2}+19 x+12$
$2 m^{2}+5 m+2$
$7 a^{2}+53 a+28$
$9 k^{2}+66 k+21$

Examples

$$
\begin{aligned}
& 3 n^{2}-8 n+4 \\
& a=3 \\
& -2=\frac{-6}{3} / \frac{-2}{3} \\
& b=-8 \\
& c=4 \\
& (n-2)\left(n-\frac{2}{3}\right) \\
& 5 x^{2}+19 x+12 \\
& 3=\frac{15}{5} / \frac{4}{5} \\
& \begin{array}{ccc}
12=5 & 2,30 & (x+3)\left(x+\frac{4}{2}\right) \\
b=19 & 6,10 & (x+12 \\
c=12 & 3,20 & (x+3)(5 x+4) \\
2 & 15,4 &
\end{array} \\
& 2 m^{2}+5 m+2 \\
& \left.(2 m+1)(m+2)_{2=\frac{4}{2}}\right)^{4} \frac{1}{2} \quad\left(m+\frac{1}{2}\right)(m+2) \\
& \begin{array}{l}
7 a^{2}+53 a+28 \\
(\dot{a}+7)(7 a+4) \quad \frac{196 / 9}{7} / \frac{49}{53}=7\left(a+\frac{4}{0}\right)(a+7)
\end{array} \\
& 9 k^{2}+66 k+21 \\
& (k+7)(9 k+3)=\frac{3}{9} / \frac{189}{66} \frac{63}{9}=7
\end{aligned}
$$

$$
\begin{aligned}
& 2 x(x-4)+3(-x+4) \\
& 2 x(x-4)-3(x-4) \\
& (x-4)(2 x-3)
\end{aligned}
$$

Today's Goal

I can identify and factor special polynomials

$$
\begin{aligned}
& 8 x^{2}-12 x-8 \\
& \left.\begin{array}{rr}
2 \\
- & 2 \\
-1 & 2 \times x \\
2 & 2 \\
2
\end{array}\right) \cdot 2 x \\
& 4\left(2 x^{2}-3 x-2\right) \quad 2 x^{2}-3 x-2 \\
& 4(x-2)(2 x+1)\left(2 x^{2}-4 x\right)+(1 x-2) \\
& -(2) \cdot 2 x-2^{1 x} \\
& \frac{2 x(x-2)+1(x-2)}{(x-2)(2 x+1)}
\end{aligned}
$$

$10 x^{2}-25 x-125$

$$
\begin{aligned}
& 10 x^{2}-25 x-125 \\
& \frac{5125}{5125} \frac{5}{5} \\
& \begin{array}{l}
2 / 5 \times x \\
-5 \cdot 5 x \\
-5 \cdot 5 \cdot 5
\end{array} \\
& 5\left(2 x^{2}-5 x-25\right) \quad 2 x^{2}-5 x-25 \\
& \left(2 x^{2}-10 x\right)+(5 x-25) \\
& 5(x-5)(2 x+5) \\
& \begin{cases}2(x) & -5 \times \\
-(2) \cdot 5(x) & -(5) \\
2 x(x-5) & +5(x-5) \\
(x-5)(2 x+5)\end{cases}
\end{aligned}
$$

$3 x^{2}-9 x-12$

$$
3 x^{2}-9 x-12
$$

$$
\begin{aligned}
& \frac{3\left(x^{2}-3 x-4\right)}{x^{2}-3 x-4} \\
& \frac{3(x-4)(x+1)}{} \\
& \left(x^{2}-4 x\right)+(1 x-4) \\
& -2 \cdot 2 x) \quad-2 \times 2 \\
& x(x-4)+1(x-4) \\
& (x-4)(x+1)
\end{aligned}
$$

$$
-4 /-3
$$

§ction \%.5: Facfor*ing Spectid Products
Perfect Sguare Trinomial

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)(a+b) \text { or }(a+b)^{2} \\
& a \frac{a^{2} a b}{a b} a^{2}+2 a b+b^{2}
\end{aligned}
$$

$a^{2}-2 a b+b^{2}=(a-b)(a-b)$ or $(a-b)^{2}$

$$
\begin{gathered}
a-b \\
-b \begin{array}{|c|c|c}
a a^{2} & -a b \\
\hline-a b & b^{2}
\end{array} \quad a^{2}-2 a b+b^{2}
\end{gathered}
$$

Examples
Determine whether each trinomial is a_ perfect square. If so, factor. If not, explain why not.

$$
\begin{aligned}
& x^{2} \oplus 4 x+4 \\
& (x)^{2} \int^{2}(2)^{2} \quad(x+2)^{2}=(x+2)(x+2) \\
& 2(x)(2) \\
& 4 x \sim \\
& x^{2} \Theta 14 x+49 \\
& \left.(x)^{2} \int_{\substack{2(x)(7) \\
14 x}}^{(7)^{2}}(x-7)^{2}\right)=(x-7)(x-7) \\
& 9 x^{2}-6 x+4 \\
& (3 x)^{2}(2)^{2} \\
& 2(3 x)(2) \\
& 12 x
\end{aligned}
$$

Try These!!!
Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

1. $9 x^{2}-15 x+64$, $(3 x)^{2} \downarrow(8)^{2}$

2. $81 x^{2} \oplus 90 x+25$

$90 \times V$

$$
=(9 x+5)(9 x+5)
$$

Try These!!!
Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

1. $9 x^{2}-15 x+64$
2. $81 x^{2} \oplus 90 x+25$ $(9 x)^{2} \underset{2(9 x)(5)}{90 x}$
3. $4 x^{4}-20 x^{2} z+25 z^{2}$ $\left(2 x^{2}\right)^{2} \quad(5 z)^{2}$

$$
2\left(2 x^{2}\right)(5 z)
$$

$$
20 x^{2} 2
$$

Examples

Determine whether the binomial is a difference of two squares. If so, factor. If not, explain.

$$
\begin{aligned}
& 1-4 x^{2} \\
& (1)^{2}(2 x)^{2} \\
& (1+2 x)(1-2 x) \\
& \text { prataci }
\end{aligned}
$$

$$
(x+7)(x-7)
$$

$16 x^{2} \sim n 4 y^{5}$

$$
1-y^{2}
$$

$$
(1)^{2}-(y)^{2}
$$

$$
(1+y)(1-y)
$$

$$
\begin{aligned}
& \text { X \#11 } 2 x-2 x y^{2} \\
& -\left(\frac{2 x}{2}\right) y y \\
& 2 \times\left(1-y^{2}\right) \\
& 2 x(1+y)(1-y) \\
& \# 13 \quad 16 d^{8} \Theta 8 d^{4}+1 \\
& \left(4 d^{4}\right)^{2} \downarrow(1)^{2} \\
& 2\left(4 d^{4}\right)(1) \\
& 8 d^{4} \\
& \left(4 d^{4}-1\right)^{2}
\end{aligned}
$$

$$
3 t^{3}-27 t
$$

$$
\begin{aligned}
& t^{2}-9 \\
& (t)^{2}-(3)^{2} \\
& (t+3)(t-3)
\end{aligned}
$$

$$
\begin{aligned}
& 3 t\left(t^{2}-9\right) \\
& 3 t(t+3)(t-3)
\end{aligned}
$$

$X 1$
\#5 $5 k^{4}+8 k^{3}-4 k^{2}$

$$
\begin{aligned}
& k^{2}\left(5 k^{2}+8 k-4\right) \\
& k^{2}(5 k-2)(k+2)
\end{aligned}
$$

Homework

Factoring Foldable (solve the 2nd one from each section)

Warm-up 2-27

Factor the following trinomials.

1. $3 p^{2}-2 p-5$
2. $12 b^{3}+48 b^{2}+48 b$
3. $x^{2}-14 x+49$
4. $100 x^{2}-4 y^{2}$

Narm-up 2-26
Factor the following trinomials.

$3 p(p+-5(p+1)$

$3 p^{2}-2 p-52$
3. $x^{2}-14 x+49$

$x(x-7)+7(-x+7)$
$x(x-7)-7(x-7)$

2. $12 b^{3}+48 b^{2}+48 b$

(2) 6

$$
\begin{aligned}
& b^{2}+4 b+4 \\
& \left.\left(b^{2}+2 b\right)+2 b+4\right) \\
& b(b) \quad(2) \times 2 \\
& 2 b) \\
& \frac{(b+2)+2(b+2)}{(b+2)(b+2)}=(b+2)^{2} \\
& \frac{\left.(b+2)^{2}\right)}{(2 b(2)}
\end{aligned}
$$

4. $100 x^{2}-4 y^{2}$
$=2 \cdot \begin{aligned} & 2.5 \cdot 5 x x \\ & 2 y y\end{aligned}$

*(4) $\left.25 x^{2}-y^{2}\right)$

$$
\begin{aligned}
& 25 x^{2}-y^{2} \\
& (5 x)^{2}(y)^{2} \\
& \hline 4(5 x+y)(5 x-y)
\end{aligned}
$$

