

Warm-up 2-25 Factor the following trinomials.

1. p² - 2p - 15

3. Let x be any real number. Then the statement $x^3 > 0$ is true for

- 2. n^2 + 5n 24
- 4. 4n² 15n 25

- A. x > 0 only.
- x < 0 only. B.
- C. no values of x.
- D. all real values of x.

2

<u>Examples</u> 3n² - 8n + 4 $5x^2 + 19x + 12$ $2m^2 + 5m + 2$ $7a^2 + 53a + 28$ $9k^{2} + 66k + 21$

Section 9.5 - Factoring specials.notebook

 $2 \times (x - 4) + 3(-x + 4)$ $2 \times (x - 4) - 3(x - 4)$ ((x - 4)(2x - 3))

Today's Goal

I can identify and factor *special* polynomials

 $8x^2 - 12x - 8$ $4\left(\frac{2x^{2}-3x-2}{4(x-2)(2x+1)}\right) \qquad 2x^{2}-3x-2$ $4\left(\frac{2x^{2}-4x}{4(x-2)}\right) \qquad 2x^{2}-4x + 1$ -2 -2 $2 \times (x-2) + 1 (x-2)$ (x-2)(2x+1)

$10x^2 - 25x - 125$

Section 9.5 - Factoring specials.notebook

 $3x^2 - 9x - 12$

Section 9.5: Factoring Special Products

<u>Perfect Square Trinomial</u>

- $a^{2} + 2ab + b^{2} = (a + b)(a + b) \text{ or } (a + b)^{2}$ $a^{2} ab$ $a^{2} ab$ $a^{2} + 2ab + b^{2}$
- $a^{2} 2ab + b^{2} = (a b)(a b) \text{ or } (a b)^{2}$ a - b a - b $a^{2} - ab$ $a^{2} - 2ab + b^{2}$

<u>Examples</u>

Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not. (+)

Try These!!!

Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

576/ 1. $9x^2 - 15x + 64$ $(3x)^2 \sqrt{8}^2$ $2(3\times)(8)$ $48\times$ 2. $81x^2 + 90x + 25$ 2025 (9x)2 J $(9x + 5)^{-})$ = (9x + 5)(9x + 5)90 $2(9\times)(5)$ $90\times$

Try These!!!

Determine whether each trinomial is a perfect square. If so, factor. If not, explain why not.

1. $9x^2 - 15x + 64$

2. $81x^2 + 90x + 25$ $(9x)^2 + (5)^2$ (9x+5)ZOLSX2 Z(9×1/5) 90× 3. $4x^4 = 20x^2z + 25z^2$ $(2x^2)^2$ (5z)² 90× (2x2-52 $2(2x^{2})(5z)$ 2022

+0x $X^{2}-25$ $(\chi^2 + 5\chi)(5\times -25)$ XXX CAX SXX CAS $\frac{\chi(x+5)-5(x+5)}{((x+5)(x-5))}$

$$\begin{array}{c}
 Difference of Two Squares \\
 a^{2} - b^{2} = (a + b)(a - b) \\
 a^{2} - b^{2} = (a + b)(a - b) \\
 a^{2} - 16 \\
 (m^{2} - 16) \\
 (m^{2} - 4)^{2} \\
 (m + 4)(m - 4) \\
 p^{4} - 16q^{2} \\
 (3p^{2} + 4q)(3p - 4q) \\
 (3p^{-1} + 4q)(3p - 4q)
\end{array}$$

Examples

Determine whether the binomial is a difference of two squares. If so, factor. If not, explain. $2 / 10^{10}$

16x2~+~4p5

#12 $3t^{3} - 27t$ t2-9 B<u>44</u>[] B33(C) $(t)^2 - (3)^2$ (t+3)(t-3) $3t(+^2-9)$ 3t(++3)(+-3) $#5 5K^{4}+8K^{3}-4K^{2}$ 5RR 2.2.2 SKJSK 7 -2K IOIL $K^{2}(5K^{2}+8K-4)$ $K^{2}(5K-2)(K+2)$ -2K/10K

Homework

Factoring Foldable (solve the 2nd one from each section)

<u>Warm-up 2-27</u>

Factor the following trinomials.

|--|

3.
$$x^2 - 14x + 49$$
 4. $100x^2 - 4y^2$

Factor the following trinomials.

