Simplify.

1. $2(w+1)$
2. $3 x\left(x^{2}-4\right)$

Find the GCF of each pair of monomials.
3. $4 h^{2}$ and $6 h$
4. $13 p$ and $26 p^{5} m$

Find the GCF.
5. $-16 p^{3} q^{2}$ and $24 p^{2} q^{3}$ and $-32 p^{4} q$

Narm-up 2-21
Simplify.

1. $2(w+1)$
2. $3 x\left(x^{2}-4\right)$

$$
3 x^{3}-12 x
$$

Find the GCF of each pair of monomials.
3. $4 h^{2}$ and $6 h$

Find the GCF.
5. $-16 p^{3} q^{2}$ and $24 p^{2} q^{3}$ and $-32 p^{4} q$

2.2.2ppq

4. $13 p$ and $26 p^{5} m$

$$
2 \frac{124}{2 \frac{112}{2 \frac{6}{3}}}
$$

31. José is making fruit-filled tart shells for a party. He has 72 raspberries and 108 blueberries. The tarts will each have the same number of berries. Raspberries and blueberries will not be in the same tart. If he puts the greatest possible number of fruits in each tart, how many tarts can he make?

31. Jose is making fruit-filled tart shells for a party. He has 72 raspberries and 108 blueberries. The tarts will each have the same number of berries. Raspberries and blueberries will not be in the same tart. If he puts the greatest possible number of fruits in each tart, how many tarts can he make?

$$
\frac{72}{36}=2 \quad \frac{108}{36}=3
$$

$$
\begin{array}{r}
\mathrm{pg} 459 \\
\# 29
\end{array}
$$

9 s and $63 \mathrm{~s}^{3}$

$$
3.35=95
$$

\# 31

$2 \cdot 2 \cdot 3 \cdot 3=36$
$108 b 1$

$$
\begin{aligned}
& \frac{72}{36}=2 \mathrm{ras} \\
& \frac{108}{36}=3 \mathrm{bl}
\end{aligned}
$$

Factor
Greatest Common Factor Prime Number Composite Number Prime Factorization Factorization

Today's Gad

I can...

- factor Polynomials by using the GCF
- factor out common binomials
- factor by grouping

$$
\begin{array}{r}
2 \boxed{72} \\
2 \longdiv { 3 6 } \\
2 \boxed{18} \\
3 \frac{9}{3}
\end{array}
$$

$108 y^{8}$ and $24 y^{5}$
(2) $2^{2} 2^{3} 23^{3}$ 3 quppayyy

$$
\begin{array}{r}
2 \lcm{24} \\
2 \frac{112}{3}
\end{array}
$$

$10 x^{5} y^{3}$ and $5 x^{3} y^{6}$

$$
\begin{gathered}
5 x x x y y y \\
5 x^{3} y^{3}
\end{gathered}
$$

Application
A cafeteria has 18 chocolate-milk cartons and 24 regularmilk cartons. The cook wants to arrange the cartons with the same number of cartons in each row. Chocolate and regular milk will not be in the same row. How many rows will there be if the cook puts the greatest possible number of cartons in each row?

$$
\frac{18}{6}=3 \quad \frac{24}{6}=4
$$

Try This!!

Adrianne is shopping for a CD storage unit. She has 36 CDs by pop music artists and 48 CDs by country music artists. She wants to put the same number of CDs on each shelf without putting pop music and country music CDs on the same shelf. If Adrianne puts the greatest possible number of CDs on each shelf, how many shelves does her storage unit need?

Try This!!
Adrianne is shopping for a CD storage unit. She has 36 CDs by pop music artists and 48 CDs by country music artists. She wants to put the same number of CDs on each shelf without putting pop music and country music CDs on the same shelf. If Adrianne puts the greatest possible number of CDs on each shelf, how many shelves does he unit need?

country

$\frac{36}{12}=\begin{array}{r}3 \text { pop } \\ \text { shelves }\end{array}$

$$
\frac{48}{12}=4 \underset{\substack{\text { country } \\ \text { shelves }}}{ }
$$

$$
3+4=7 \text { shelves }
$$

Section \%.2: Factoring by GCF
Think.... What is the Distributive Property?

$$
a(b+c)=\frac{a b+a c}{}
$$

Factoring Polynomials by GCF
GCF ~ Greatest Common Factor
Example: $4 x^{2}-3 x$

More Examples

$$
\begin{aligned}
& -2 \times(7+6 x) \\
& -14 x-12 x^{2}
\end{aligned}
$$

$3 x^{3}+2 x-10$
$3 x x x$ cannot be factored
$2 \times$
-2.5

Try These!! (check your answers)

1. $5 b+9 b^{3}$
2. $9 d^{2}-8^{2}$
3. $-18 y^{3}-7 y^{2}$
4. $8 x^{4}+4 x^{3}-2 x^{2}$

Try These!! (check your answers)

1. $5 b+9 b^{3}$

$3.3 b b b$

$$
b\left(5+9 b^{2}\right)
$$

check
(3) (3)

$$
\begin{aligned}
& 5\left(5+9 b^{2}\right) \\
& 5 b+9 b^{3}
\end{aligned}
$$

2. $9 d^{2}-8^{2}$
$3.3 d d$
nothing in common

$$
8^{2}=64
$$

cannot be factored
3. $-18 y^{3}-7 y^{2} \quad 248$

4. $8 x^{4}+4 x^{3}-2 x^{2}$

$$
2 x^{2}\left(4 x^{2}+2 x-1\right)
$$

check

$$
-y^{2}(18 y-7)
$$

$$
-18 y^{3}-7 y^{2}
$$

$2 \frac{14}{2}$

$$
\begin{aligned}
& 2 x^{2} 7 x^{2}+2 x-1 \\
& 8 x^{4}+4 x^{3}-2 x^{2}
\end{aligned}
$$

Application
The area of a court for the game squash is $\left(9 x^{2}+6 x\right) m^{2}$. Factor this polynomial to find possible expressions for the dimensions of the squash court.

$$
9 x^{2}+6 x m^{2}
$$

$$
\text { one side: } 3 \times \mathrm{m}
$$ brother side: $3 x+2 \mathrm{~m}$

$$
\begin{aligned}
& 3 \times(3 x+2) \\
& 9 x^{2}+6 x^{2}
\end{aligned}
$$

Try This!!

The area of a solar panel on a calculator is $\left(2 x^{2}+4 x\right) \mathrm{cm}^{2}$. Factor this polynomial to find the possible expressions for the dimensions of the solar panel.

Try This!!
The area of a solar panel on a calculator is $\left(2 x^{2}+4 x\right) \mathrm{cm}^{2}$. Factor this polynomial to find the possible expressions for the dimensions of the solar panel.

$$
\begin{aligned}
& \begin{array}{l}
\text { one side: } 2 x \mathrm{~cm} \\
\text { other side: } x+2 \mathrm{~cm} \\
x+2 \mathrm{~cm}
\end{array} \\
& 2 \times(x+2)
\end{aligned}
$$

Homework

pg. 467 \#1-11

