Tell whether the second number is a factor of the first number

1. 50,6
2. 105,7
3. List the factors of 28.

Tell whether each number is prime or composite. If the number is composite, write it as the product of two numbers.
4. 11
5. 98

Warm-up 2/1才

Tell whether the second number is a factor of the first number

1. 50, 6 NO
2. 105, 7 Yes $\quad 7.15=105$
3. List the factors of $28.1,2,4,7,14,28^{105 \div 7=15}$

Tell whether each number is prime or composite. If the number is composite, write it as the product of two numbers.
4. 11
prime
5. 98
composite

$$
2.49 \text { or } 14.7
$$

Today's Goals

I can...

- write the prime factorization of numbers
- find the GCF of monomials

Factors

~a whole number that divides a number evenly

Find the factors of the number, 36.

Prime Number: a number divisible by one and itself only.

Prime Factorization:

The list of all prime numbers that are factors of that number.

$$
1,2,3,5,7,11,13,17,23
$$

Factors of 36 were:

Factorting Methods

Try These!!

Write the prime factorization of each number.

1. 40 3. 49
2. 33
3. 19

Try These!!

Write the prime factorization of each number.

Common Factors

Common factors: Factors that are shared by numbers or variables

Greatest common factor: (GCF) the largest shared factor

Factors of 16:
Factors of $48: 1 / \cdot 2 \cdot 3 \cdot 4 \cdot 12 \cdot 16 \cdot 24 \cdot 48$

Common factors: $1,2,4,16$ GCF:IG

Examples

Find the GCF of each pair of numbers.
100 and 60

26 and 52

$$
2 \cdot 13=26
$$

Try These!!

Find the GCF of the following pairs.
5. 12 and 16
6. 15 and 25

Try These!!
Find the GCF of the following pairs.

GCF of Manamids
$3 x^{3}$ and $6 x^{2}$

$15 x^{3}$ and $9 x$

$8 x^{2}$ and $7 y^{3}$
$2.2 .2 x x$
7 yyy

(1)

Try These!!

7. $18 \mathrm{~g}^{2}$ and $27 \mathrm{~g}^{3}$
8. $8 x$ and $7 v^{2}$
9. $16 a^{6}$ and $9 b$

Try These!!
7. $18 g^{2}$ and $27 g^{3}$
 $9 g^{2}$
8. $16 a^{6}$ and $9 b$
2.2 .2 2agaga $33 b$

9. $8 x$ and $7 v^{2}$ $\frac{2.2 .2 x}{7 v v}$

$27 x^{2}$ and $81 x^{4}$

$36 x^{2} y^{2}$ and

$36 x^{8}$ and $72 x^{3}$
 $108 y^{8}$ and $24 y^{5}$
 $10 x^{5} y^{3}$ and $5 x^{3} y^{6}$

Homework

 pg. 459 \#17-31 (odd)