Good Afternoon!

Please put up your phones, take your seats, and have out your tsunami city homework.

Radical Functions \& Equations

A2.AREI.2* Solve simple rational and radical equations in one variable and understand how extraneous solutions may arise.

What is a radical equation?

Examples of Radical Equations	Non-Examples of Radical Equations
$\sqrt{x}+5=11$	$\sqrt{5}+x^{2}=11$
$\sqrt[3]{x-4}=7$	$x-4=\sqrt[4]{16}$
$4 \sqrt{x-7}+12=28$	$x \sqrt{10-7}+12=28$
$\sqrt[5]{x}=225$	$x=\sqrt[3]{27}$

Definitions

Radical Equation: an equation where the variable is found underneath a square root, cube root, or higher root

Radicand: the number or expression under a radical symbol

Radicals

$$
\begin{array}{rr}
(\sqrt{x})^{2}=(6)^{2} & \sqrt{36}=6 \sqrt{(\sqrt{x})^{2}}=(-6)^{2} \\
x=36 & x=36 \\
\sqrt{36}=6 x
\end{array}
$$

Example 1

$$
\begin{gathered}
\sqrt{x}+5 /=11 \\
-15-5 \\
\hline(\sqrt{x})^{2}=(6)^{2} \\
x=36
\end{gathered}
$$

$$
\begin{gathered}
\sqrt{36}+5=11 \\
6+5=11 \\
11=11
\end{gathered}
$$

You Try

$\sqrt{x}-4=7$

You Try

$$
\begin{array}{r}
\sqrt{x}-4=7 \\
+4+4 \\
\hline(\sqrt{x})^{2}=(11)^{2} \\
x=121
\end{array}
$$

$$
\begin{gathered}
\sqrt{121}-4=7 \\
11-4=7 \\
7=7
\end{gathered}
$$

Example 2: What's the difference?

$$
\begin{aligned}
(\sqrt{x-4})^{2} & =(7)^{2} \\
x-4 & =49 \\
+4 & +4
\end{aligned}
$$

$$
\sqrt{53-4}=7
$$

$$
\sqrt{49}=7
$$

$$
7=76
$$

You Try

$\sqrt{x+6}=15$

You Try

$$
\begin{gathered}
(\sqrt{x+6})^{2}=(15)^{2} \\
x+6=225 \\
-6=-6
\end{gathered}
$$

$$
\begin{aligned}
\sqrt{219+6} & =15 \\
\sqrt{225} & =15 \\
15 & =15
\end{aligned}
$$

Example 3

$$
\begin{gathered}
4 \sqrt{x-7}+12=28 \\
-12=12 \\
\hline \frac{4 \sqrt{x-7}}{4}=\frac{16}{4} \\
\left(\begin{array}{l}
\sqrt{x-7})^{2}=(4)^{2} \\
x-7=16 \\
+7+7 \\
x=23
\end{array}\right.
\end{gathered}
$$

$$
4 \sqrt{23-7}+12=28
$$

$$
4 \sqrt{16}+12=28
$$

$$
4(4)+12=28
$$

$$
16+12=28
$$

$$
28=28 V
$$

You Try

$5 \sqrt{x+3}-10=15$

You Try

$$
\begin{gathered}
5 \sqrt{x+3}-10=15 \\
+10+10 \\
\hline \frac{5 \sqrt{x+3}}{5}=\frac{25}{5} \\
(\sqrt{x+3})^{2}=(5)^{2} \\
x+3=25 \\
-3-3 \\
x=22
\end{gathered}
$$

$$
\begin{aligned}
& 5 \sqrt{22+3}-10=15 \\
& 5 \sqrt{25}-10=15 \\
& 5(5)-10=15 \\
& 25-10=15 \\
& 15=15
\end{aligned}
$$

Proof 1 with Partner

Steps	Reasons
$\sqrt{2 x-1}+5=8$	Given Equation

What if our equation was...?

$$
\begin{gathered}
\sqrt{x}=-5 \quad \sqrt{x+5}=-8 \\
\frac{\sqrt{x+7}+30=10}{-30-30} \\
\sqrt{x+7}=-20
\end{gathered}
$$

Example 4

$$
i=\sqrt{-1}
$$

$$
\begin{gathered}
(\sqrt{x-3})^{2}=(\sqrt{2 x+4})^{2} \\
1 x-3=2 x+4 \\
\frac{-2 x}{12 x} \\
-1 x-3=4 \\
+3+3 \\
\frac{-x}{=-1}=7 \\
x=-7
\end{gathered}
$$

$$
\sqrt{-7-3}=\sqrt{2(-7)+4}
$$

$$
\sqrt{-10}=\sqrt{-14+4}
$$

Example 5

$$
(2-\sqrt{x})^{2}=(2-\sqrt{x})(2-\sqrt{x})
$$

$$
\begin{aligned}
&(\sqrt{x-12})^{2}=(2-\sqrt{x})^{2} \\
& x-12=4\left(-2 \sqrt{x}-2 \sqrt{x}+x^{-\sqrt{x}}\right. \\
& x-12=4-4 \sqrt{x}+x \\
& \frac{-12}{x}=4-4 \sqrt{x} \\
& \frac{-4}{-16}=-\frac{4 \sqrt{x}}{-4} \\
&(4)^{2}(\sqrt{x})^{2}
\end{aligned}
$$

$$
x=16
$$

$$
\sqrt{16-12}=2-\sqrt{16}
$$

$$
2=-2
$$

You Try

$$
\sqrt{x-8}=4-\sqrt{x}
$$

$$
(4-\sqrt{x})^{2}=(4-\sqrt{x})(4-\sqrt{x})
$$

You Try

$$
\begin{aligned}
& (\sqrt{x-8})^{2}=(4-\sqrt{x})^{2} \\
& \frac{x-8}{4 x}=16(-4 \sqrt{x}-4 \sqrt{x}+x \\
& \frac{-8}{-8}=16-8 \sqrt{x} \\
& \frac{-24}{-8}=\frac{-8 \sqrt{x}}{-8} \\
& (3)^{2}=(\sqrt{x})^{2} \\
& 9=x
\end{aligned}
$$

4	$-\sqrt{x}$
4	16
	$-4 \sqrt{x}$
$-\sqrt{x}$	$-4 \sqrt{x}$

$$
\begin{gathered}
\sqrt{9-8}=4-\sqrt{9} \\
\sqrt{1}=4-3 \\
1=10
\end{gathered}
$$

Cube root!

$$
\begin{gathered}
(\sqrt[3]{x})^{3}=(3)^{3} \\
x=27
\end{gathered}
$$

