Good Morning!

Warm-Up 12-3

Take a moment to write down some things that you are thankful for and fun things that you did from break. Then do the warm-up below what you write.

Determine if the following sequences are linear, exponential or neither.

1. $6,9,13,18,24, \ldots$
2. $3,9,27,81, \ldots$
3. $29,35,41,47, \ldots$
4. $-5,10,-20,40,-80, \ldots$

Warm-Up 12-2
Determine if the following sequences are linear, exponential or neither.

1. $6,9,13,18,24, \ldots$
$+3+4+5+6$
Neither
2. $29,35,41,47, \ldots$ $+6+6+6$
Linear
3. $3,9,27,81, \ldots$
exponential
4. $-5,10,-20,40,-80, \ldots$
$x-2$
exponential

An arithmetic sequence has a constant difference between each term. (Linear Function)
For example: $2,4,6,8,10,12, \ldots$
We can see clearly that all the terms differ by +2 .
We call this the common difference, d .
A geometric sequence has a constant ratio (multiplier) between each term. (Exponential Function)

An example is: $2,4,8,16,32, \ldots$
So to find the next term in the sequence we would multiply the previous term by 2 .

This is called the common ratio, r .

UNIT 6 - EXPONENTIAL FUNCTIONS Linear vs. Exponential Functions (Day 1)

Complete these tables below, graph each set of points.
1.

\mathbf{x}	$f(x)$
0	-5
1	2
2	9
3	16
4	23
5	

2.

x	$f(x)$
0	1
1	2
2	4
3	8
4	

Key Components

Key Components

UNIT 6 - EXPONENTIAL FUNCTIONS Linear vs. Exponential Functions (Day 1)

Complete these tables below, graph each set of points.

Key Components
Linear
Increasing
Slope: +7
y-int: -5
common difference

Key Components

Exponential
Increasing
y-int: I
common ratio:2

Linear Functions	Table Pattern shows \qquad or \qquad by same number: This is pattern is called a \qquad \qquad Rate of Change is \qquad between intervals
Exponential Functions	Table Pattern shows \qquad or \qquad by same number: This is pattern is called a \qquad \qquad Rate of Change is \qquad between intervals

3. Use the function $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$ to fill in the table below and graph.

a) What type of function is this
and why?
b) What is the domain?
4. Use the function $\mathrm{g}(\mathrm{x})=\left(\frac{1}{2}\right)^{\mathrm{x}}$ to fill in the table below and graph.

a) What type of function is this and why?
b) What is the domain?
c) What is the range?
d) What is the rate of change?

Linear Functions	Table Pattern shows adding or subtracting by same number: This is pattern is called a common difference (d) Rate of Change is constant between intervals (the same)
	Table Pattern shows multiplyingor dividing by same number: Exponential Functions
This is pattern is called a common ratio (r) Rate of Change is changing between intervals (different)	

3. Use the function $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$ to fill in the table below and graph.

4. Use the function $g(x)=\left(\frac{1}{2}\right)^{x}$ to fill in the table below and graph.

a) What type of function is this and why?
Exponential

$$
(\div 2 \text { each time) }
$$

b) What is the domain?

$$
(-\infty, \infty)
$$

c) What is the range?

$$
y>0
$$

d) What is the rate of change?
changing

Recall Types of Functions and their key components:

functions have a common functions have a common	With a ___ rate of change
	With a ___ rate of change

1. After graduation, you are offered two jobs. Cedar Grove Associates offered to start you at $\$ 30,000$ with a 6% increase per year. Maple Grove Associates offered to start you at $\$ 40,000$ with a $\$ 1200$ raise per year. Compare the two jobs offered by completing the table below. Answer the following questions?

Year	Cedar Grove	Maple Grove
180	1	$\$ 30,000$
2	31800	41,200
3	33708	42,400
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		

a) Cedar Grove models what type of function? Explain

It has a common \qquad of \qquad
b) Maple Grove models what type of function? Explain

It has a common \qquad of \qquad
C) If you plan on moving to a different state in 5 years which company would be the better option for you to choose? Explain.
d) If your plans change and you don't move, which company would be the better option to choose as a long term career? Explain

Recall Types of Functions and their key components:

> Linear functions have a common difference. With a constantrate of change Exponential functions have a common ratio

1. After graduation, you are offered two jobs. Cedar Grove Associates offered to start you at $\$ 30,000$ with a 6% increase per year. Maple Grove Associates offered to start you at $\$ 40,000$ with a $\$ 1200$ raise per year. Compare the two jobs offered by completing the table below. Answer the following questions?

a) Cedar Grove models what type of function? Explain
+120 Exponential
It has a common ratio of 1.06
b) Maple Grove models what type of function? Explain

Linear

It has a common difference of 1200
C) If you plan on moving to a different state in 5 years which company would be the better option for you to choose? Explain.
Maple Grove
d) If your plans change and you don't move, which company would be the better option to choose as a long term career? Explain

Cedar Grove
2. Given the situations below, identify if it is a linear or exponential model or neither. Explain your reasoning.
a. A savings account that starts with $\$ 5000$ and receives a deposit of $\$ 825$ per month.
b. The value of a house that starts at $\$ 150,000$ and increases by 1.5% per year.
c. Tina owns 4 rabbits. She expects them to double each year.
d. The cost of operating Jelly's Doughnuts is $\$ 1600$ per week plus $\$.10$ to make each doughnut.
e. The value of John's car that depreciates 20% per year
f. The height of a ball that is thrown in the air
3. Which situation could be modeled with an exponential function?
(1) the amount of money in Suzy's piggy bank which she adds $\$ 10$ to each week
(2) the amount of money in a certificate of deposit that gets 4% interest each year
(3) the amount of money in a savings account where $\$ 150$ is deducted every month
(4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week
4. Which statement below is true about linear functions?
(1) Linear functions grow by equal factors over equal intervals
(2) Linear functions grow by equal differences over equal intervals
(3) Linear functions grown by equal differences over unequal intervals
(4) Linear functions grow by unequal factors over equal intervals
5. Given the tables below, classify them as a linear model, exponential model, or neither.

HOURS	MONEY
1	100
2	200
3	400
4	800
5	1600

HOURS	MONEY
1	100
2	200
3	300
4	200
5	100

HOURS	MONEY
1	100
2	250
3	400
4	550
5	700

2. Given the situations below, identify if it is a linear or exponential model or neither. Explain your reasoning.
a. A savings account that starts with $\$ 5000$ and receives a deposit of $\$ 825$ per month.
Linear: increase by a constant rate
b. The value of a house that starts at $\$ 150,000$ and increases by 1.5% per year. Exponential: multiplying each year (1.015)
c. Tina owns 4 rabbits. She expects them to oubleeach year.

$$
\text { Exponential doubles }(\times 2) \text { each year }
$$

d. The cost of operating Jelly's Doughnuts is $\$ 1600$ per week plus $\$.10$ to make each doughnut.

$$
\text { Linear: adding } 0.1 \text { each donut }
$$

e. The value of John's car that depreciates 20% per year

f. The height of a ball that is thrown in the air
Neither

3. Which situation could be modeled with an exponential function?
(1) the amount of money in Suzy's piggy bank which she adds $\$ 10$ to each week (2) the amount of money in a certificate of deposit that gets 4% interest each year (3) the amount of money in a savings account where $\$ 150$ is deducted every month
(4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week
4. Which statement below is true about linear functions? malt. ply
(1) Linear functions grow by equal factors over equal intervals
(2) Linear functions grow by equal differences over equal intervals
(3) Linear functions grown by equal differences over unequal intervals
(4) Linear functions grow by unequal factors over equal intervals
5. Given the tables below, classify them as a linear model, exponential model, or neither.

HOURS	MONEY
1	100
2	200
3	400
4	800
5	1600

HOURS	MONEY
1	100
2	200
3	300
4	200
5	100

Neither

HOURS	MONEY
1	100
2	250
3	400
4	550
5	700

Linear

Homework

Linear vs. Exponential worksheet

