Warm-up $11-8$
*Have your homework out on your desk.

1. Over the last 50 years, the average temperature has increased by 2.5 degrees worldwide (I made this up). What is the rate of change in worldwide temperatures per year?
2. Find the slope and explain what the slope represents

3. Find the slope of the line represented by the equation $5 y=125+25 x$

4. A rocket is 1 mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{150-30}=\frac{4}{120}=\frac{1}{30}
$$

Warm-up 11.8 *Have your homework out on your desk. 1. Over the last 50 years, the average temperature has increased by 2.5 degrees worldwide (I made this up). What is the rate of change in $\frac{\Delta y}{\Delta y}$ worldwide temperatures per year?

$$
\frac{2.5 \text { deg }}{50 \text { years }}=0.05 \text { degrees per year }
$$

2. Find the slope and explain what the slope represents.

$$
m=\frac{g_{2}-g_{1}}{x_{2}-x_{1}}=\frac{17-11}{8-2}=\frac{6}{6}=\underbrace{\substack{\text { per year } \\ x_{1} y_{1}}}_{\text {hourly pane }}
$$

3. Find the slope of the line represented by the equation $\frac{5 y}{5}=\frac{125}{5}+\frac{25 x}{5}$

$$
m=S
$$

$$
y=25+5 x
$$

$$
y=5 x+25
$$

8. A rocket is y_{1} mile above the earth in 30 seconds and y_{2} miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{\text { miles }}{s \operatorname{scon} x} \\
m= & \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
= & \frac{5-1}{150-30}=\frac{4}{120}=\frac{1}{30}
\end{aligned}
$$

$$
\frac{4}{120}=\frac{1}{30}
$$

8. A rocket is y_{1} mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$$
\begin{array}{r}
\frac{1}{30} \approx 0.03 \mathrm{~m} / \mathrm{s} \quad \frac{\Delta y}{\Delta x}=\frac{m}{3} \\
\frac{0.03 \mathrm{mi}}{51} \cdot \frac{606}{1 \mathrm{mn}}=1.8 \mathrm{mi} /\left.\mathrm{min} \frac{x}{30}\right|_{1} ^{1} \\
\left.m=\frac{y_{2}-g_{1}}{x_{2}-x_{1}}=\frac{5-1}{150-30}=\frac{4}{120}=\frac{1}{30} \approx 0.03 \right\rvert\, 5
\end{array}
$$

11. michael started a savings account with $\$ 300$. After 4 weeks, he had $\$ 350$ dollars, and after 9 weeks, he had $\$ 400$. What an gere of money in his savings account per week?

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{array}{r}
y-350=10(x-4) \\
y-350=10 x+40 \\
+350 \quad+350 \\
y=10 x+310
\end{array} \\
& \frac{\Delta y}{\Delta x}=\frac{\phi}{\text { wed }}
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{400-350}{9-4}=\frac{50}{5}
\end{aligned}
$$

shours
Δy
12. A plane left Chicago at 8:00 A.M. At 1: P.M., the plane landed in Los Angeles, which is 1500 miles away. What was the average speed of the plane for the trip?

13. After 30 baseball games, A-Rod had 25 hits. If after 100 games he had 80 hits, what is his average hits per baseball game.

$$
\frac{11 \text { hits }}{14 \text { games }} \approx 0.79
$$

$$
\frac{\Delta u}{\Delta x}=\frac{h_{i t}+g_{\text {cm e }}}{}
$$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{80-25}{100-30}=\frac{55}{70}=\frac{11}{14}
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-25=\frac{11}{14}(x-30) \\
& \frac{y+25}{+25}=\frac{11}{14} x-\frac{330}{24} \\
& y=\frac{11}{14} x+\frac{10}{7}
\end{aligned} \quad y=0.79 x+1.43
$$

13. After 30 baseball games, A-Rod had 25 hits. If after 100 games he had $\frac{X_{2}}{x_{2}}$ hits, what is his average hits per baseball game.

$$
y=\frac{11}{14} x+1.43
$$

$$
\frac{h}{9}
$$

$$
\frac{\Delta y}{\Delta x}=\frac{\text { dep }}{\text { ind }}
$$

$$
(30,25)(100,80)
$$

x	y
30	25
100	80

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{80-25}{100-30}=\frac{55}{70} \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-25 & =\frac{11}{14}(x-30) \\
y-25 & =\frac{11}{14} x-\frac{330}{14} \\
+25 & +25 \\
y & =\frac{11}{14} x+1.43
\end{aligned}
$$

$\frac{55}{70}=\frac{11}{14}$ hits/game ≈ 1.27
14. $(8,2)$ and $(11,3)$
15. $(8,0)$ and $(8,6)$
14. $\left.\begin{array}{c}x_{1}, y_{1} \\ (8,2)\end{array}\right)$ and $\begin{gathered}x_{2}, y_{2} \\ (11,3)\end{gathered} \quad \frac{3-2}{11-8}=\left(\frac{1}{3}\right)$
15. $\begin{gathered}x_{1}, y_{1} \\ (8,0)\end{gathered}{ }^{x_{2}} y_{2}, y_{2}(8,6) \quad \frac{6-0}{8-8}=\frac{6}{0}$ undefined

Section 4.5

Today's Goal

I can identify, write, and graph direct variation equations.

Section 4.5: Direct Variation

Direct Variation ~ a special type of linear function written in the form $y=k x$ where k is the constant of variation

$$
y=2 x
$$

Identifying Direct Variation Equations (if a direct variation equation identify the constant of variation)
$y=6 x$
$10 x=-12 y$
YES
$2 x+7 y=10$
NO

Try These!

Determine if the following are direct variation equations.
$18 y=54 x-26$
NO
$20 x=4 y$
YES

Linear Function "I can" learning targets

Name: \qquad
I can...

1. identify linear functions and linear equations.
2. give the domain and range of a linear function.
3. graph linear functions that represent real-world situations.
4. find x - and y-intercepts
5. interpret the x - and y-intercepts meanings in real-world situations.
6. graph linear functions.
7. find rates of change/slopes
8. determine the meaning of rates of change/slope
9. find slope by using the slope formula
10. identify, write, and graph direct variation equations
11. write a linear equation in slope intercept form
12. write a linear equation in point-slope form
13. write a linear equation given two points
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26. \qquad

Word sort/connections

Review for the test.

