## Warm-up 11/12

Solve the following systems of equations

1. 
$$x = 2$$
  
 $y = 6x - 11$ 

2. 
$$2x - 3y = -1$$
  
 $y = 2x - 2$ 



3. 
$$y = 3x - 8$$
  
 $y = -2x + 4$ 

4. 
$$-28x - 14y = 98$$
  
 $-20x + 14y = -50$ 

## Warm-up 11/13

Solve the following systems of equations



3. 
$$y = 3x - 8$$
  
 $y = -2x + 4$ 

$$(2.4, -.8)$$

$$-\frac{23(-1)-14y=98}{28-14y=98}$$

$$-\frac{28}{-14y}=\frac{98}{-28}$$

$$-\frac{28}{-14y}=\frac{98}{-28}$$

$$-\frac{11}{-14}=\frac{70}{-14}$$

$$-\frac{14}{-14}=\frac{70}{-14}$$

2. 
$$2x - 3y = -1$$

$$y = 2x - 2$$

$$2x - 3(2x - 3) = -1$$

$$2x - 6x + 6 = -1$$

$$-1x + 6 = -1$$

$$-4x = -7$$

$$-4x = -7$$

$$-1x + 6 = -1$$

$$-4x = -7$$

$$-1x + 6 = -1$$

$$-1x$$

4. 
$$-28x - 14y = 98$$
  
 $-20x + 14y = -50$ 

Side Side

$$y \ge 2x - 3$$

$$y \le -2x + 4$$

$$y = 2x - 3$$

# **Today's Goal**

#### I can...

solve a system of Inequalities by graphing

- > greater than (dashed line, shade above)
- < less than (dashed line, shade below)
- ≥ greater than or equal to (solid line, shade above)
- ≤ less than or equal to (solid line, shade below)

$$y > 2x - 1$$
 $(-1, 1)$   $(5, 7)$ 

- 1. Graph points as normal
- 2. Draw a solid or dashed line according to the sign.
- 3. Shade above or below the line according to the sign.











#### 1. Graph the following inequalities.

a.) 
$$y > 2x - 2$$









#### 1. Graph the following inequalities.

























b.) 
$$y \le -x + 5$$



Try This One! (pg 90 in your workbook)

$$\not \geqslant y \ge 2x$$





Try This One! (pg 90 in your workbook)

$$y \ge 2x$$





## Try This One!

$$y \ge -3x + 4$$



$$y < 4x + 3$$



## Try This One!

$$y \ge -3x + 4$$







y < 4x + 3







For each inequality below, describe the boundary line, solid or dashed, and state whether it should be shaded above or below.

1. 
$$y < 2x + 1$$

2. 
$$y \ge -3/5x - 2$$

3. 
$$y \le 6x - 3$$

4. 
$$y > -3$$

solid or dashed; above or below

For each inequality below, describe the boundary line, solid or dashed, and state whether it should be shaded above or below.

1. 
$$y < 2x + 1$$

2.  $y \ge -3/5x - 2$ 

3.  $y \le 6x - 3$ 

4. y > -3

solid or dashed; above or below

<u>solid</u> or dashed; ahove or below

solid or dashed; above or below

solid or <u>dashed</u>; above or below

### 6.7: Solving Systems of Linear Inequalities

Systems of Linear Inequalities:

-2 or more linear inequalities graphed on the same coordinate plane where the common shaded region is the solution.

Example:

$$\begin{cases} \frac{y < -3x + 1}{y > x - 4} \end{cases}$$



### 6.7: Solving Systems of Linear Inequalities

Systems of Linear Inequalities:

-2 or more linear inequalities graphed on the same coordinate plane where the common shaded region is the solution.

Example:

$$\begin{cases} y < -3x + 1 \\ y > x - 4 \end{cases} m = \frac{3}{1}$$







. . ......

1. 
$$\begin{cases} y \le 3/2x - 10 \\ y > -1/3x + 5 \end{cases}$$



Is (-6, -2) a solution?





Is (0,0) a solution?





Is (-6, -2) a solution?

 $\cap \bigcirc$ 



Is (0,0) a solution?

