Warm-up 10-30

1.) The table shows the average temperature (${ }^{\circ} \mathrm{F}$) for five months in a certain city. Find the rate of change for each time period. During which time period did the temperature increase at the fastest rate?

Month	2	3	5	7	8
Temp. $\left({ }^{\circ} \mathbf{F}\right)$	56	56	63	71	72

2.) Find the x and y-intercept for $2 x+3 y=12$ and $3 x+4 y=24$.

Write the intercepts as ordered pairs (points).

Warm-up 10-30
1.) The table shows the average temperature (${ }^{\circ} \mathrm{F}$) for five months in a certain city. Find the rate of change for each time period. During which time period did the temperature increase at the fastest rate?

2.) Find the x and y-intercept for $2 x+3 y=12$ and $3 x+4 y=24$.

Write the intercepts as ordered pairs (points).

Any homework or other questions before the quiz?

https://goo.gl/forms/W47iP0YdY9oFJsG93

Section 4.3

Today's Goals

I can

- relate a constant rate of change to the slope of a line.
- write linear equations (point-slope and slopeintercept forms)

Talk it Out

Talk with a partner. Was there a time when you experienced a very steep hill? Maybe your experience involved a bicycle, skis, a car, etc.. Talk about your experience with your partner. Why does steepness matter? How might this connect with linear equations? Be prepared to share your story with the class.

Section 4.3: Rate of Change

A rate of change is a ratio that compares the amount of change in a dependent variable to the amount of change in an independent variable.

$$
\text { Rate of change }=\frac{\text { rise }}{\text { run }}=\frac{\text { dependent }}{\text { independent }}
$$

Graph the data and show the rates of change.

Day	1	6	16	22	30
Balance (\$)	550	285	210	210	175

Bank Balance

> If all of the connected segments have the same rate of change, then they all have the same steepness and together form a straight line. The constant rate of change of a line is called the slope of the line.

Slope of a Line

The rise is the difference in the y-values of two points on a line.
The run is the difference in the x-values of two points on a line.
The slope of a line is the ratio of rise to run for any two points on the line.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}
$$

(Remember that y is the dependent variable and x is the independent variable.)

Finding Slope of a Line

Begin at one point and count vertically to find the rise.

Then count horizontally to the second point to find the run.

Section 4.4: The Slope Formula

There is also a formula you can use to find the slope of a line, which is usually represented by the letter m . To use this formula, you need the coordinates of two different points on the line.

Slope Formula

WORDS	FORMULA	EXAMPLE
The slope of a line is the ratio of the difference in y-values to the difference in x-values between any two different points on the line.	If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two different points on a line, the slope of the line is $\left.m=\frac{y_{2}-y}{x_{2}-x_{1}}\right)$	If $\left(2, y_{3}\right)$ and $(1,4)$ are two points on a line, the slope of the line is
$m=\frac{4-(-3)}{1-2}=\frac{7}{-1}=-7$.		

Find the slope of the line that contains $(0,3)$ and $(-5,-5)$. $x_{1} y_{1} \quad x_{2} y_{2}$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-5-(3)}{-5-(0)}=\frac{-8}{-5}=\frac{8}{5} \quad \begin{array}{l}
x \\
(-5,-5) \\
\\
\\
(-0,-3) \\
\Delta x \Delta y \\
-5-8 \\
\frac{-8}{-5}=\frac{8}{5}
\end{array}
\end{aligned}
$$

Try This!

Find the slope of the line that contains $(0,-3)$ and $(5,-5)$.

Try This!

$\begin{array}{cc}x_{2} & y_{2} \\ (5,-5) .\end{array}$
Find the slope of the line that contains $(0,-3)$ and $(5,-5)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Classifying Slope

Positive Slope	Negative Slope	Zero Slope	Undefined Slope
Line rises from left to right.	Line falls from left to right.	Horizontal line	Vertical line

Negative Slope
 Zero Slope
 No Slope

Describing Slope

Tell whether the slope of each line is positive, negative, zero or undefined.

Try This!

Tell whether the slope of each line is positive, negative, zero or undefined.

Homework

pg. 248 \# 1-13 (odd),

