Warm-up 10-1
*Have your homework out on your desk.

1. Over the last 50 years, the average temperature has decreased by 2.5 degrees worldwide (I made this up). What is the rate of change in worldwide temperatures per year?
2. Find the slope and explain what the slope represents.

3. Find the slope of the line represented by the equation $5 y=125+25 x$

Warm-up 10-2
*Have your homework out on your desk.

1. Over the last 50 years, the average temperature has increased by 2.5 degrees worldwide (I made this up). What is the rate of change in Δy worldwide temperatures per year?
Δx

$$
\frac{2.5 \text { deg }}{50 y \text { years }}=0.05 \text { degrees per year }
$$

Hourly Wages over time
2. Find the slope and explain what the slope represents.
3. Find the slope of the line represented by the equation $\frac{5 y}{5}=\frac{125}{5}+\frac{25 x}{5}$

$$
\begin{aligned}
& y=25+5 x \\
& y=5 x+25
\end{aligned}
$$

$$
\begin{aligned}
& \left(-x^{x}, \frac{y_{3}}{3}\right) \underline{m=2} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=2(x-(-4)) \\
& y-3=2(x+4)
\end{aligned}
$$

$$
\begin{gathered}
y-6=-5(x-1) \\
y-6=-5 x+5 \\
+6=6 \\
y=-5 x+17
\end{gathered}
$$

If you are finished, please make sure that your chromebook is up and then grab a board, marker, and eraser.

$$
\begin{aligned}
& y=m x+b \quad y-y_{1}=m\left(x-x_{1}\right) \\
& (1,-3)(2,4)
\end{aligned}
$$

$$
\begin{array}{cc}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}, y=m x+b} & y-y_{1}=m\left(x-x_{1}\right) \\
\left(x_{1}, y_{1}\right. \\
1,-3)(2,4) & \frac{4-(-3)}{2-1}=\frac{4+3}{1}=\sqrt{2}, y_{2} \\
y-(-3)=7(x-1) & y=7 x+b \\
y+3=7(x-1) & -3=7(1)+b \\
y+3=7 x-3=7+b \\
y+3=7 x-7 & -7-7 \\
y=7 x-10 & y=7 x-10
\end{array}
$$

$$
\begin{array}{cc}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}, y} y=m x+b & y-y_{1}=m\left(x-x_{1}\right) \\
\left(\begin{array}{cc}
x_{1}, y_{1} \\
1,-3) & x_{2} y_{2} \\
2,4
\end{array}\right. & \frac{4-(-3)}{2-(1)}=\frac{4+3}{2-1}=\frac{7}{1} \\
y-(-3)=7(x-1) & y=7 x+b \\
y+3=7(x-1) & -3=7(1)+b \\
y+3=7 x-7 & -3=7+b \\
\frac{-3}{y=7 x-10} & -10=b \quad y=7 x-10
\end{array}
$$

$$
\begin{aligned}
& y=m x+b \quad y-y_{1}=m\left(x-x_{1}\right) \\
& (-2,4)(1,10)
\end{aligned}
$$

$y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{align*}
& y-4=2(x-(-2)) \tag{2}\\
& y-4=2(x+2) \\
& y-4=2 x+4 \\
&+4+4 \\
& y=2 x+8
\end{align*}
$$

$$
\frac{10-4}{1-(-2)}=\frac{6}{1+2}=\frac{6}{3}
$$

$$
\begin{aligned}
& y=2 x+b \\
& 4=2(-2)+b \\
& 4=-y+b \\
& 4+4 \\
& 8=b \\
& y=2 x+8
\end{aligned}
$$

$$
\begin{array}{cl}
y=m x+b & y-y_{1}=m\left(x-x_{1}\right) \\
\left(x_{1} y_{1}, y_{2} y_{2}\right. & \frac{10-4}{1-(-2)}=\frac{10-4}{1+2}=\frac{6}{3} \\
-2,4)(10) & y=2 x+b \\
y-4=2(x-(-2)) & 4=2(-2)+b \\
y-4=2(x+2) & 4=-b \\
y-4=2 x+4 & +4+4 \\
+4=b y=2 x+8
\end{array}
$$

14. $(8,2)$ and $(11,3)$
15. $(8,2)$ and $(11,3)^{x_{2}} \quad \frac{3-2}{11-8}=\frac{1}{3}$
16. $(8,0)$ and $(8,6)$
17. $(8,0)$ and $(8,6) \frac{6-0}{8-8}=\frac{6}{0}$ undefined

A climber is on a hike. After 2 hours, he is at an altitude of 400 feet. After 6 hours, he is at an altitude of 700 feet. What is the average rate of change? Write an equation in slope-intercept form and explain what the parts mean.

A climber is on a hike. After 2 hours, he is at an altitude of 400 feet. After 6 hours, he is at an altitude of 700 feet. What is the average rate of change? Write an equation in slope-intercept form and explain what the parts mean.

$$
\begin{array}{ll}
\frac{\text { feet }}{\text { hour }}=\frac{300}{4}=75 f+\text { per hour } \\
(2,400)(6,700) & y=75 x+b \\
y-y_{1}=m(x-x .) & 400=75(2)+b \\
y-400=75(x-2) & 400=150+b \\
y-400=75 x-150 & \frac{150-150}{250=6} \quad y=75 x+250 \\
+400+400 & y=75 x+250
\end{array}
$$

8. A rocket is 1 mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.
9. A rocket is P mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$$
\frac{2.5 \mathrm{~mm}}{1} \cdot \frac{60 \mathrm{me}}{1 \mathrm{~mm}}=150 \mathrm{sec}
$$

150 sec
8. A rocket is 1 mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$\frac{4}{120}=\frac{1}{30} \approx 0.033 \mathrm{miles} / \mathrm{sec}$

$$
150 \mathrm{sec}
$$

$$
\frac{1 \text { mile }}{30 \mathrm{sec}} \cdot \frac{60 \mathrm{selc}}{1 \mathrm{~min}}=\frac{60 \mathrm{mile}}{30 \mathrm{~min}}=2 \mathrm{miles} / \mathrm{min}
$$

$$
\frac{3(2)}{60(60)}=\frac{30}{3600}=\frac{1}{120}
$$

8. $y_{1} \quad y_{1} \quad y_{2} \quad x_{2} 150 \mathrm{sec}$
9. A rocket is 1 mile above the earth in 30 seconds and 5 miles above the earth in 2.5 minutes. What is the rockets rate of change in miles per second? What about miles per minute.

$$
\frac{\Delta y}{\Delta x}=\frac{\text { miles }}{\sec }
$$

$$
m=\frac{y_{2}-g_{1}}{x_{2}-x_{1}}=\frac{5-1}{150-30}=\frac{4}{120}=\frac{1}{30}
$$

11. Michael started a savings account with $\$ 300$. After 4 weeks, he had $\$ 350$ dollars, and after 9 weeks, he had $\$ 400$. What is the rate of change of money in his savings account per week?
11. Michael started a savings account with $\$ 300$. After 4 weeks, he had $\$ 350$ dollars, and after 9 weeks, he had \$400. What change of money in his savings account per week?

$$
m=\frac{400-350}{9-4}=\frac{50}{5}
$$

12. A plane left Chicago at 8:00 A.M. At 1: P.M., the plane landed in Los Angeles, which is 1500 miles away. What was the average speed of the plane for the trip?
shours
Δy
13. A plane left Chicago at $8: 00$ A.M. At 1. P.M., the plane landed in Los Angeles, which is 1500 miles away. What was the average speed of the plane for the trip?

$\stackrel{x_{1}}{x_{1}} \stackrel{y_{2}}{y_{2}} \stackrel{y_{2}}{3}$
14. After 30 baseball games, A-Rod had 25 hits. If after 100 games he had 80 hits, what is his average hits per baseball game.

$$
\frac{11 \text { hits }}{14 \text { games }} \approx 0.79
$$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{80-25}{100-30}=\frac{55}{70}=\frac{11}{14}
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-25=\frac{11}{14}(x-30) \\
& \frac{y-25=\frac{11}{14} x-\frac{330}{14}}{+25}+y=\frac{11}{14} x+\frac{10}{7}
\end{aligned} \quad y=0.79 x+1.43 .
$$

13. After 30 baseball games, A-Rod had 25 hits. If after 100_{2} games he had $\frac{x_{2}}{8} 2$ hits, what is his average hits per baseball game.

$$
y=\frac{11}{14} x+1.43
$$

$$
\frac{h}{9} \quad \frac{\Delta y}{\Delta x}=\frac{\operatorname{dep}}{\operatorname{ind}}
$$

$$
\begin{array}{c|c}
x & y \\
\hline 30 & 25 \\
>00 & 80
\end{array}>55
$$

$$
(30,25)(100,80)
$$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{80-25}{100-30}=\frac{55}{70}
\end{aligned}
$$

$$
\frac{55}{70}=\frac{11}{14} \text { hits/game } \approx 1.27
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-25=\frac{11}{14}(x-30) \\
y-25=\frac{11}{14} x-\frac{330}{14} \\
+25 \quad+25 \\
\hline y=\frac{11}{14} x+1.43
\end{gathered}
$$

