Warm-up 10/18

Find 3 points for the following equations (x, y). You will choose your x 's.
1.) $y=2 x+4$
2.) $y-2 x=4$
3.) $2 x+2 y=6$

Warm-up 10/18
Find 3 points for the following equations (x, y). You will choose your x 's.

Warm-up 10/18

Find 3 points for the following equations (x, y). You will choose your x 's.
1.) $y=2 x+4$

x	y
2	y
0	4
-2	0

3.) $2 x+2 y=6$
$\begin{aligned} & -2 x \\ & \frac{2 y}{2}=\frac{6-2 x}{2} \\ & y=\frac{6-2 x}{2}\end{aligned} \quad \begin{array}{rl}2 & y \\ & 0 \\ & -2 \\ & 5\end{array}$
2.) \(\begin{aligned} y-2 x=4

+2 x+2 x\end{aligned} |\)| $y=4+2 x$ | |
| ---: | ---: |
| x | 11 |
| 3 | 10 |
| 0 | 4 |
| -3 | -2 |

Today's Goals

I can...

- identify linear functions and linear equations.
- give the domain and range of a linear function.
- graph linear functions that represent real-world situations.

Section 4.1: Identify Linear Functions

Linear Function: a function whose graph is a line

Determining if a graph is a linear function.

You Try These!

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

You Try These!

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Determining if a table or ordered pairs are representing a linear function

Determining if a table or ordered pairs are representing a linear function
If a table represents a linear function, then the x-values MUST change by a constant amount AND the y-values MUST change by a constant amount.

You Try This!
Tell whether the set of ordered pairs $\{(3,5),(5,4),(7,3),(9,2)$, (11, 1) \} satisfies a linear function. Explain.

You Try This!

Tell whether the set of ordered pairs $\{(3,5),(5,4),(7,3),(9,2)$, (11, 1)\} satisfies a linear function. Explain.

Determining if an equation is a linear function

A linear equation is any equation that can be written in the standard form shown below.

Standard Form of a Linear Equation

$A x+B y=C$ where A, B, and C are real numbers and A and B are not both 0
$2 x+3 y=8$
If an equation is not in Standard Form, you can change it into the form.

Rules for determining if an equation is linear (if not in standard for)

1. If the variable x has any exponent other than 1 then the equation is NOT LINEAR

$$
2 x^{2}+3 y=8 \quad y=\frac{8-2 x^{0}}{3}
$$

2. If the variable x is in the denominator then the equation is NOT LINEAR

$$
\frac{8}{x}+y=4 \quad y=4-\frac{8}{x}
$$

3. If the variable x is inside the $\sqrt{\text { sign then the equation is NOT LINEAR }}$

$$
\sqrt{x}+2 y=8 \quad y=4-\frac{\sqrt{x}}{2}
$$

4. If the variable x is multiplied by y then the equation is NOT LINEAR

$$
x y=8 \quad y=\frac{8}{x}
$$

5. If the variable x is the exponent then the equations is NOT LINEAR

6. Must have a y in the equation.

$$
y=8
$$

Linear Function

$$
\frac{2}{5} x+y=-1
$$

17. $y=-\frac{1}{6} x+1$
18. $y=8$

$$
0 x+y=8
$$

21. $y=0.125 x-2$
22. $y=-4$. 3
23. $y=-225 x+2$

24. $y=-\frac{2}{5} x-1$

$$
\begin{aligned}
& y=-\frac{2}{5} x-1 \\
& \frac{12}{2 x}+\frac{2}{3} x \\
& \frac{2}{5} x+y=-1
\end{aligned}
$$

17. $y=-\frac{1}{6} x+1$
18. $y=8$

$$
\frac{1}{6} x+y=1
$$

20. $y=-0.25 x+2$
$0.25 x+y=2$
yes
$-0.125+y=-2$ yes

22. $y=-4)^{3}$
23. $y=\frac{x}{3}+1$

$$
\begin{aligned}
& -\frac{x}{3}+y=1 \\
& y e p s
\end{aligned}
$$

Application of Linear Functions

Sue rents a manicure station in a salon and pays the salon owner \$5.50 for each manicure she gives. The amount Sue pays each day is given by $f(x)=5.50 x$, where x is the number of manicures. Graph this function and give its domain and range.

$$
\begin{array}{ll|l}
f(x)=5.50 x & \frac{x}{0} & y \\
y=5.50 x & 1 & 5.50 \\
& 2 & 11 \\
D: \xi 0,1,2,3 \ldots 3 & 36.50 \\
R i \varepsilon 0,5.5,11,16.5 \ldots 3
\end{array}
$$

You Try This!

At a salon, Sue can rent a station for $\$ 10.00$ per day plus $\mathbf{\$ 3 . 0 0}$ per manicure. The amount she would pay each day is given by $f(x)=3 x+10$, where x is the number of manicures. Graph this function and give its domain and range.

You Try This!

At a salon, Sue can rent a station for $\$ 10.00$ per day plus $\$ 3.00$ per manicure. The amount she would pay each day is given by $f(x)=3 x+10$, where x is the number of manicures. Graph this function and give its domain and range.

$$
\begin{aligned}
& f(x)=3 x+10 \\
& y=3 x+10 \\
& \text { whote\#'s } \\
& D:\{0,1,2,3, \ldots\} \\
& R:\{10,13,16,19, \ldots\}
\end{aligned}
$$

Did we accomplish our goals for today?

THINK AND DISCUSS

1. Suppose you are given five ordered pairs that satisfy a function. When you graph them, four lie on a straight line, but the fifth does not. Is the function linear? Why or why not?

3. GET ORGANIZED Copy and

 complete the graphic organizer. In each box, describe how to use the information to identify a linear function. Include an example.Determining Whether a Function is Linear

Homework pg. 234 \#1-14

