

Simplify each expression using the properties of exponents.

1. $x^{2} x^{7}$
2. $\left(k^{4}\right)^{3}$
3. $h^{3} h^{-3}$
4. $(a b)^{9}$
5. $\mathrm{c}^{24} / \mathrm{c}^{14}$
6. $(a / c)^{14}$

Simplify each expression using the properties of exponents.

1. $x^{2} x^{7}=x^{2+7}=x^{9}$
2. $\left(\mathrm{k}^{4}\right)^{3}=K^{4(3)}=K^{12}$
3. $h^{3} h^{-3}=h^{3+(-3)}=h^{0}=1$
4. $(a b)^{9}=a^{9} b^{9}$
5. $c^{24} / c^{14}=c^{24-14}=c^{10}$
6. $(a / c)^{14}=\frac{a^{14}}{c^{14}}=a^{14} / c^{14}$

Section 7.1 ~ Integer Exponents
What is an integer?

- a positive or negative whole number

A power is a number with a base and an exponent

The base is a repeated factor and the exponent tells how many times the base is multiplied by itself.

Powers are written as:
Expanded form:

$$
8^{5}
$$

Verbal form:
x to the power of four
eight raised to the fifth power
Practice: Write each in expanded form and find the value.

$$
\begin{gathered}
3^{3}=3 \cdot 3 \cdot 3 \quad 7^{4}=7 \cdot 7 \cdot 7 \quad 12^{2}=12 \cdot 12 \\
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{6}
\end{gathered}
$$

Negative Base
Scenario \#1: negative base exponent
Example: $-5^{2}=-25$

$$
-5.5
$$

Scenario \#2: (negative base) exponent

Example: $(-5)^{2}=25$

$$
(-5)(-5)
$$

$$
\text { (negative base) even }=\text { pus }
$$

$$
\text { (negative base) odd }=\text { neg }
$$

$$
\begin{aligned}
& (-4)^{22}=\text { pos } \\
& (-4)^{3}=\text { neg }
\end{aligned}
$$

Negative Exponent -

$$
x^{-n}=\frac{1}{x^{n}}, \text { or } \frac{1}{x^{n}}=x^{-n}
$$

$$
h^{3} h^{-3}=\frac{h^{3}}{h^{3}}=h^{0}=1
$$

$$
\text { Example: } 5^{-2}=\frac{1}{5^{2}} \quad(-2)^{-3}=\frac{1}{(-2)^{3}} \quad 4^{-5}=\frac{1}{4^{5}}
$$

$$
\begin{array}{r}
\frac{1}{25}=004-\frac{1}{8}=- \\
\frac{1}{a^{-3}}=\frac{a^{3}}{1}=a^{3}
\end{array}
$$

Exponent Rules

Product Rule $-x^{m} x^{n}=x^{m+n}$
Power Rule- $\left(x^{m}\right)^{n}=x^{m n}$
Power of a Product Rule- $(x y)^{n}=x^{n} y^{n}$
Quotient Rule- $\frac{x^{m}}{x^{m}}=x^{m-n}$
Power of a Quotient Rule- $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
Definitions:
Zero Exponent-x ${ }^{0}=1$
Exponent Definition- $x^{n}=x x x x x \ldots$ (n-times)

Examples

Simplify
a. $7 w^{-4}$

b. $\frac{-5}{k^{-2}}-5 k^{2}$

Try These!
a. $2 p^{6} m^{-3}$

Examples

1. A sand fly may have a wingspan up to $5^{-3} \mathrm{~m}$. Simplify this expression.
2. Simplify and Evaluate:
a.) 4^{-2}
b.) 7°
c.) $(-5)^{-4}$
d.) -5^{-4}

Try These on your own!

1. $3^{5}\left(3^{1}\right)$
2. $8^{2}\left(8^{2}\right)$
3. $z^{6}\left(z^{3}\right)$
4. $x^{4}\left(y^{5}\right)$

Try These on your own!

1. $3^{5}\left(3^{1}\right)$

$$
3^{6}
$$

2. $8^{2}\left(8^{2}\right)$

3. $z^{6}\left(z^{3}\right)$
z^{a}
4. $x^{4}\left(y^{5}\right)$

Steps to Simplify a product of monomials

1. Remove parentheses - group constants together and the group variables together
2. Simplify by using product property

Practice:

$$
\begin{aligned}
& (5 t)\left(-30 t^{2}\right)\left(4 a^{2} b^{2}\right)\left(-a c^{2}\right)\left(3 b^{2} c^{2}\right) \\
& =5(-30)(4)(-1)(3) a^{2} a^{1} t t^{2} b^{2} b^{2} c^{2} c^{2} \\
& =18 a^{3} a^{4} a^{4} \\
& =1800 a^{3} b^{4} c^{4} t^{3}
\end{aligned}
$$

Try these! Simplify.

1. $\left(3 m^{2}\right)\left(60 m p^{2}\right)$

$$
180 m^{3} p^{2}
$$

2. $(8 x z)(-10 y)\left(-2 y z^{2}\right)$

$$
160 x y^{2} z^{3}
$$

3. $x^{3 c} x^{4 c}$

$$
x^{7 c}
$$

4. $\left(-3 h^{2}\right)\left(5 g^{-3} h^{4}\right)(-9)$

Section 7.3: Power Properties
Power-of-a-Power Property (for monomials)
For all real numbers x and all integers m and n, $\left(x^{m}\right)^{n}=x^{m n}$

Examples:
Simplify and evaluate.
$\left(2^{3}\right)^{4}=2^{12}\left(10^{3}\right)^{2}=10^{6}\left(p^{2}\right)^{5}=p^{10}\left(x^{m}\right)^{2}=x^{2 m}$

Try These!

1. $\left(2^{6}\right)^{2}$
2. $\left(10^{4}\right)^{5}$
3. $\left(y^{3}\right)^{5}$
4. $\left(m^{3}\right)^{x}$

Try These!

1. $\left(2^{6}\right)^{2}$

$$
2^{12}
$$

2. $\left(10^{4}\right)^{5}$

$$
10^{20}
$$

3. $\left(y^{3}\right)^{5}$

$$
y^{15}
$$

Power-of-a-Product Property
For all real numbers x and y, and all integers n (monomials-distribute),

$$
(x y)^{n}=x^{n} y^{n}
$$

Examples:
Simplify

$$
(x y)^{2}=x^{2} y^{2} \quad\left(x^{4} y^{2} z^{5}\right)^{3}=x^{2} y^{6} z^{15}\left(a b^{2} c^{n}\right)^{5}=a^{5} b^{10} c^{5 n}
$$

Try These!

1. $\left(x y^{3}\right)^{2}$
2. $\left(x^{2} y^{2} z^{2}\right)^{3}$
3. $(a b c d)^{n}$
4. $\left(-3 n^{2} k^{-4}\right)^{2}$

Try These!

1. $\left(x y^{3}\right)^{2}$

$$
x^{2} y^{6}
$$

2. $\left(x^{2} y^{2} z^{2}\right)^{3}$

$$
x^{6} y^{6} z^{6}
$$

3. $(a b c d)^{n}$

$$
a^{n} b^{n} c^{n} d^{n}
$$

4. $\left(-3 n^{2} k^{-4}\right)^{2}$

$$
\begin{aligned}
& (-3)^{2} n^{4} k^{-8} \\
& 9 n^{4} k^{-8}=\frac{9 n^{4}}{k^{8}}
\end{aligned}
$$

More Practice

1. $4\left(m^{2} n\right)^{3}$
2. $(c d)^{3}\left(c^{2} d\right)^{4}$
3. $\left(2 x^{3} y\right)^{3}\left(x y^{4}\right)^{2}$
4. $\left(-2 r^{5} s\right)^{2}\left(-3 r s^{2}\right)^{3}$

Section 7.4 ~ Quotient Properties

 Quotient Property of Exponents* applies only to like bases

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

* When dividing like bases, subtract the exponents and leave the base the same

Examples

1. $\frac{3^{5}}{3^{3}}$
2. $\frac{4^{5}}{4^{10}}$
3. $\frac{m^{2} n^{6} m^{5}}{5 n^{2} m^{12}}$
4. $\frac{12 x^{2} y}{2 x^{5}}$
5. $\frac{16 m^{2} n^{5} p^{2} n^{-3}}{4 n^{12} p^{5}}$

Try These!!

1. $3 n^{4}$
$3 n^{3}$
2. $2 h^{3} j^{-3} k^{4}$ 3jk
3. $4 x^{0} y^{-2} z^{3}$ 4x

Power of a Quotient

* distribute the exponent to all the exponents of the quotient

$$
=\frac{x^{3}}{y^{6}}
$$

Examples

1. $\left(\frac{6^{5}}{7^{8}}\right)^{4}=\frac{6^{20}}{7^{32}}$
2. $\left(\frac{m^{2} x^{3}}{m x^{5}}\right)^{3}$

事

$$
\text { 4. }\left(\frac{x^{3}}{y^{-2}}\right)^{4}
$$

$\underline{\left(a^{5} a^{9}\right)^{-5}}$ a^{-15}

$$
\left(\frac{m^{-3} m^{-7}}{\left(m^{-4}\right)^{-3}}\right)^{5}
$$

Try These!

1. $\left(\frac{6 y^{7}}{x}\right)^{4}$
2. $\left(\frac{3 z^{2} x^{3}}{z x^{6}}\right)^{4}$
3. $\left(\frac{m^{2}}{{m n^{3}}^{3}}\right)^{-5}$

To Polynomials

