Warm-up 1-15

Add or subtract each polynomial. Make sure that your answer is in standard form. Identify the leading coefficient and name the polynomial.

1. $\left(-5 m^{5}+6 n-21 m\right)+\left(-10 m+15 m^{5}-12 n\right)$
2. $\left(7 x^{3}+6 x^{2}-2 x\right)-\left(9 x^{2}-4 x+3\right)$
3. $(24 x y+3 x-21 y+3)+(13 x y+7 y-9 x-3)$

Warm-up 1-15
Add or subtract each polynomial. Make sure that your answer is in standard form. Identify the leading coefficient and name the polynomial.

1. $\left(-5 m^{5}+6 n-21 m\right)+\left(-10 m+15 m^{5}-12 n\right)$
$-5 m^{5}+6 n-21 m-10 m+15 m^{5}-12 n$
$-5 m^{5}+6 n-21 m \quad 10 m^{5}-31 m-6 n$
$+15 m^{5}-12 n-10 m$
$10 m^{5}-6 n-31 m$
LC:10 Quintic Trinomial
2. $\left(7 x^{3}+6 x^{2}-2 x\right) \Theta\left(9 x^{2}-4 x+3\right)$

3. $(24 x y+3 x-21 y+3)+(13 x y+7 y-9 x-3)$
$24 x y+3 x-24 y+3+13 x y+7 y-9 x-3$
$+24 x y+3 x-21 y+z$
$+13 x y-9 x+7 y+3$
$37 x^{\prime} y-6 x-14 y$
(LC:37) Quadratic Trinomial

$$
\begin{gathered}
3 x-x+x+4+3 x-x+x+x \\
8 x
\end{gathered}
$$

$$
\begin{aligned}
& 2(10)+2(5) \\
& 20+10=30
\end{aligned}
$$

Quiz

Section 7.1 ~ Integer Exponents
What is an integer?

- a positive or negative whole number

A power is a number with a base and an exponent

The base is a repeated factor and the exponent tells how many times the base is multiplied by itself.

Powers are written as:
x^{4}
3^{2}
Verbal form:
x to the fourth power x raised to the fourth power 3 times it self Practice: Write each in expanded form and find the value.

$$
3^{3}=3.3 .3 \quad 7^{4}=7.7 .7 \quad 12^{2}=12.12
$$

$$
\begin{array}{cc}
x+1 \overbrace{3 x-1}^{3 x-1} x+1 & 5 \square_{10}^{10} 5 \\
3 x-x+x+4+3 x-x+x+x & 2(10)+2(5) \\
8 x & 20+10=30
\end{array}
$$

Section 7.1 ~ Integer Exponents
What is an integer?

- a positive or negative whole number

A power is a number with a base and an exponent

The base is a repeated factor and the \qquad exponent tells how many times the base is multiplied by itself.

Powers are written as:
Expanded form:
8^{5}
$8 \cdot 8 \cdot 8 \cdot 8 \cdot 8$
Verbal form:
X to the power of four
eight raised to the fifth power
Practice: Write each in expanded form and find the value.

$$
\begin{gathered}
3^{3}=3 \cdot 3 \cdot 3 \quad 7^{4}=7.7 .7 \quad 12^{2}=12 \cdot 12 \\
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{6}
\end{gathered}
$$

Exponent Rules

Product Rule $-x^{m} x^{n}=x^{m+n}$
Power Rule- $\left(x^{m}\right)^{n}=x^{m n}$
Power of a Product Rule- $(x y)^{n}=x^{n} y^{n}$
Power of a Fraction Rule $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
Quotient Rule- $\frac{x^{m}}{x^{n}}=x^{m-n}$
Definitions:
Exponent Definition- $x^{n}=x x x x x \ldots$ (n-times)
Zero Exponent- $x^{\circ}=1$
Negative Exponent $=x^{-n}=\frac{1}{x^{n}}$ or $x^{n}=\frac{1}{x^{-n}}$

Exponent Definition- $x^{n}=x x x x x \ldots$ (n-times)
Zero Exponent- $x^{0}=1$
Negative Exponent $=x^{-n}=\frac{1}{x^{n}}$ or $x^{n}=\frac{1}{x^{-n}}$

$$
\frac{1}{x^{-n}}=x^{n} \quad \frac{1}{x^{n}}=x^{-n}
$$

Homework

Exponents Rules Worksheet \#1, 7, 9-11, 22

